Select language: En
0
2013
Impact Factor

Vol. 4, No. 2

Vol. 4, No. 2, 2008

Kuznetsov A. P.,  Kuznetsov S. P.,  Sataev I. R.,  Sedova Y. V.
Abstract
In paper we suggest an example of system which dynamics is answered to conception of a «critical quasi-attractor». Besides the brief review of earlier obtained results the new results are presented, namely the illustrations of scaling for basins of attraction of elements of critical quasi-attractor, the renormalization group approach in the presence of additive uncorrelated noise, the calculation of universal constant responsible for the scaling regularities of the noise effect, the illustrations of transitions initialized by noise that are realized between coexisted attractors.
Keywords: quasi-attractor, renormalization group method, type of criticality, bifurcation, scaling, noise
Citation: Kuznetsov A. P.,  Kuznetsov S. P.,  Sataev I. R.,  Sedova Y. V., Critical point of accumulation of fold-flip bifurcation points and critical quasi-attractor (the review and new results), Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 113-132
DOI:10.20537/nd0802001
Ivanova A. V.,  Chupakhin A. P.
Abstract
We investigate exact shallow water on a rotating sphere. Thismodel is used in oceanology and physics of atmosphere for describing large-scalemotions of gas and fluid.We construct and study solution,which describe the damped ring source on the sphere. The motion takes place in a spherical belt. System of equations of shallow water on the sphere has solutions of two types: supercritical (supersonic) and subcritical (subsonic).
Keywords: shallow water on a sphere, two types motion, differential equation
Citation: Ivanova A. V.,  Chupakhin A. P., On damping source in model of the shallow water on rotating sphere, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 133-144
DOI:10.20537/nd0802002
Palymskiy I. B.
Abstract
Two- and three-dimensional turbulent convectional flows of viscous incompressible fluid in a horizontal layer are studied numerically. The layer is heated from below and its boundaries are assumed to be free of shear stresses. For temperature pulsations the Kolmogorov spectrums $k^{-5/3}$ and $k^{-2,4}$ are found. In the two-dimensional case the Obukhov-Bolgiano spectrum $k^{-11/5}$ and the spectrum $k^{-5}$ for the velocity pulsation are obtained. The spectrum $k^{-5}$ was predicted theoretically for large-Prandtl-number liquids. The results presented in the paper are in good agreement with experimental data and organically extend the numerical results obtained by other researches.
Keywords: simulation, hydrodynamics, convection, heat transfer, spectrum
Citation: Palymskiy I. B., Numerical investigation of Rayleigh–Benard turbulent convection spectrums, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 145-156
DOI:10.20537/nd0802003
Kozlov V. V.
Abstract
The famous Lagrange identity expresses the second derivative of the moment of inertia of a system of material points through the kinetic energy and homogeneous potential energy. The paper presents various extensions of this brilliant result to the case 1) of constrained mechanical systems, 2) when the potential energy is quasi-homogeneous in coordinates and 3) of continuumof interacting particles governed by the well-known Vlasov kinetic equation.
Keywords: Lagrange’s identity, quasi-homogeneous function, dilations, Vlasov’s equation
Citation: Kozlov V. V., Lagrange’s identity and its generalizations, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 157-168
DOI:10.20537/nd0802004
Zakharova A. S.,  Vadivasova T. E.,  Anishchenko V. S.
Abstract
We investigate effective diffusion coefficient of instantaneous phase of chaotic self-sustained oscillations and its connection with synchronization threshold. It is showed that effective phase diffusion coefficient in contrast to maximal Lyapunov exponent allows to distinguish the regions of spiral and funnel attractor. We ascertain that synchronization threshold of chaos is in order-of-magnitude agreement with the value of diffusion coefficient divided by the mean frequency of self-sustained oscillations.
Keywords: chaotic self-sustained oscillations, synchronization threshold, effective diffusion coefficient of instantaneous phase
Citation: Zakharova A. S.,  Vadivasova T. E.,  Anishchenko V. S., The interconnection of synchronization threshold with effective diffusion coefficient of instantaneous phase of chaotic self-sustained oscillations, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 160-180
DOI:10.20537/nd0802005
Kon'kov L. E.,  Chizhova T. L.,  Koudryashova Y. V.,  Chodnovsky V. M.,  Prants S. V.
Abstract
Dynamics of calcium ions releasing is studied in the framework of a simple electron-conformal model of a cellular Ryanodine channel, a giant protein molecule playing an important role in many biochemical processes. Taking into account only two coupled degrees of freedom (external conformal and internal electron ones), we introduce a Hamiltonian of a cellular Ryanodine channel belonging to the class of spin-boson Hamiltonians. The corresponding equations of motion constitute a nonlinear five-dimensional dynamical system with two isolated integrals of motion. Hamiltonian chaos may arise in that system as a result of a transversal intersection of stable and unstable manifolds of an unperturbed separatrix. The maximal Lyapunov exponent computed is positive in a certain range of values of control parameters. Poincare sections computed demonstrate typical patterns of Hamiltonian chaos with coexisting domains of regular and chaotic motion corresponding to regular and chaotic oscillations of the internal state of the cellular Ryanodine channel. An intermittency of those oscillations is found numerically and explained in terms of a stickiness effect of trajectories to the boundaries of stability islands in the phase space. Thus, even a single cellular Ryanodine channel is able to work in different regimes (regular, chaotic and weakly chaotic) depending on the values of the control parameters.
Keywords: cellular Ryanodine channel, Hamiltonian chaos
Citation: Kon'kov L. E.,  Chizhova T. L.,  Koudryashova Y. V.,  Chodnovsky V. M.,  Prants S. V., Nonlinear dynamics of a cellular Ryanodine channel, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 181-192
DOI:10.20537/nd0802006
Lakhno V. D.,  Korshunova A. N.
Abstract
Evolution of a quantum-mechanical particle in a uniform molecular chain is simulated by a system of coupled quantum-classical dynamical equations with dissipation. Stability of a uniformdistribution of the particle over the chain is studied. An asymptotical expression is obtained for the time in which a soliton state is formed. The validity of the expression is checked by direct computational experiments. It is shown that the time of soliton formation depends strongly on the initial phase of the particle’s wave function. The results obtained are used to analyze some experiments on charge transfer in DNA. The correlation between autolocalization effect and the reduction of wave function is discussed.
Keywords: DNA, nanoelectronics, quantum, dissipative, numerical, hyperbolic, relaxation
Citation: Lakhno V. D.,  Korshunova A. N., The modelling of selftrapped state formation in homogeneous polynucleotide chain, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp. 193-214
DOI:10.20537/nd0802007

Back to the list