Численное исследование спектров турбулентной конвекции Рэлея—Бенара

И.Б. Палымский

Современная гуманитарная академия, Новосибирский филиал, Кафедра математики и информатики 630064, Россия, Новосибирск, ул. Ватутина, 71 E-mail: palymsky@hnet.ru

Получено 07 апреля 2008 г.

В двумерной и трехмерной постановках рассмотрена задача о конвекции несжимаемой жидкости между двумя горизонтальными, свободными от касательных напряжений плоскостями при подогреве снизу. Для температурных пульсаций получены спектры Колмогорова $k^{-5/3}$ и $k^{-2,4}$. Для пульсаций скорости в двумерной постановке получены спектр Болджиано–Обухова $k^{-11/5}$ и спектр k^{-5} , предсказанный теоретически для жидкости с высоким числом Прандтля. Полученные данные согласуются с известными экспериментальными данными и дополняют результаты численных исследований других авторов.

Ключевые слова: моделирование, гидродинамика, конвекция, теплоперенос, спектр

I. B. Palymskiy Numerical investigation of Rayleigh–Benard turbulent convection spectrums

Two- and three-dimensional turbulent convectional flows of viscous incompressible fluid in a horizontal layer are studied numerically. The layer is heated from below and its boundaries are assumed to be free of shear stresses. For temperature pulsations the Kolmogorov spectrums $k^{-5/3}$ and $k^{-2,4}$ are found. In the two-dimensional case the Obukhov–Bolgiano spectrum $k^{-11/5}$ and the spectrum k^{-5} for the velocity pulsation are obtained. The spectrum k^{-5} was predicted theoretically for large-Prandtl-number liquids. The results presented in the paper are in good agreement with experimental data and organically extend the numerical results obtained by other researches.

Keywords: simulation, hydrodynamics, convection, heat transfer, spectrum Mathematical Subject Classifications: 76F35,76F65, 76M20, 76M22

1. Введение

Классическая задача о конвекции Рэлея—Бенара в различных постановках исследовалась численно [1–10] и экспериментально [11–15]. Приведем краткий обзор полученных ранее результатов при высокой надкритичности $r = Ra/Ra_{cr}$, где Ra и Ra_{cr} — число Рэлея и его критическое значение, а Pr — число Прандтля.

При численном моделировании различают две постановки задачи о конвекции в бесконечном горизонтальном слое — со свободными (от касательных напряжений) и жесткими (с условием прилипания) горизонтальными границами, как правило, решение предполагается периодическим в горизонтальных направлениях или удовлетворяющим специальным граничным условиям [16]. Обе постановки задачи часто приводят к решениям, которые различаются лишь количественно, а не качественно [17]. Этим и относительной простотой решения задачи о конвекции со свободными граничными условиями и объясняется интерес к этой постановке.

Основные трудности при численном моделировании конвекции при высокой надкритичности связаны с наличием растущих линейных возмущений с огромными инкрементами, так при $r = 3, 4 \cdot 10^4$ и Pr = 10 существуют возмущения, растущие в линейном приближении как $\exp(1367 \cdot t)$. Последнее обстоятельство накладывает серьезные ограничения на численные методы, затрудняя использование каких-либо итераций, верхней и нижней релаксации, последовательного решения уравнений системы. Между тем число Рейнольдса является относительно медленно растущей функцией надкритичности в конвекции Рэлея—Бенара и $Re \approx 375$ при $r = 3, 4 \cdot 10^4$ (Pr = 10)[16].

Диссипация и генерация энергии турбулентности растут при увеличении надкритичности примерно как $r^{1,3}$ [1,18]. При достаточно большой надкритичности большой поток переносимой из области генерации в область диссипации энергии обуславливает образование инерционных интервалов и спектров.

Известно два основных сценария развития конвективной турбулентности [19]. Сценарий Колмогорова, при котором предполагается, что температура ведет себя как пассивная примесь, предполагает наличие двух инерционных интервалов переноса энергий пульсаций температуры и скорости, с формированием одинаковых спектров $k^{-5/3}$, где k — волновое число в случае зависимости от пространственных переменных либо частота — от времени. Силы плавучести здесь существенной роли не играют.

Напротив, Р. Болджиано и А. Обухов (БО) предположили существование инерционного интервала для переноса энергии пульсаций температуры и в области больших масштабов равенство по порядку величины членов плавучести и нелинейного переноса. Это приводит к спектрам $k^{-7/5}$ для температуры и $k^{-11/5}$ для скорости.

В двумерном случае в области малых масштабов возможно появление инерционного интервала переноса энстрофии (k^{-1} для температуры и k^{-3} для скорости) и обратного (красного) каскада переноса энергии пульсаций скорости, направленного в обратную сторону от масштаба генерации в область малых масштабов [19].

В экспериментах по турбулентной конвекции для пульсаций температуры наблюдались спектры Колмогорова $k^{-5/3}$, БО $k^{-7/5}$ и $k^{-2,4}$ [11–14,20]. Для пульсаций скорости наблюдались спектр БО $k^{-11/5}$ и $k^{-1,35}$, но спектр Колмогорова $k^{-5/3}$ не обнаружен [13,15]. Физические механизмы появления спектров $k^{-2,4}$ и $k^{-1,35}$ для пульсаций температуры и скорости, отмеченных в экспериментальных работах [11,15], соответственно в настоящее время не известны.

В немногочисленных численных исследованиях турбулентной трехмерной конвекции при высокой надкритичности для пульсаций температуры были получены спектры БО $k^{-7/5}$ [3] и k^{-1} [1], но спектр Колмогорова не обнаружен. Для пульсаций скорости — спектры $k^{-5/3}$, k^{-3} , $k^{-7/5}$ [1–3], но спектр БО $k^{-11/5}$ не наблюдался.

НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145–156 ____

В [4] проведено моделирование турбулентной конвекции по двумерной модели бесконечного числа Прандтля, получены спектры k^{-1} , k^{-2} для пульсаций температуры и k^{-2} — для скорости, но спектры Колмогорова и БО не обнаружены.

В [18] описаны результаты моделирования двумерной конвекции со свободными граничными условиями при надкритичности до $r = 3, 4 \cdot 10^4$. В данной работе на основе этого подхода выполнено трехмерное моделирование конвекции со свободными границами при $r \leq 950$.

Цель работы — изучение спектров двумерной и трехмерной конвекции между двумя горизонтальными, свободными от касательных напряжений плоскостями при подогреве снизу и сравнение рассчитанных временных спектров пульсаций температуры с полученными в экспериментах по турбулентной конвекции.

2. Постановка задачи

В приближении Буссинеска рассматриваются двумерные и трехмерные конвективные течения вязкой несжимаемой жидкости между двумя горизонтальными плоскостями при подогреве снизу. Конвективное течение рассматривается в прямоугольной в плане области с размерами π/α и π/β в горизонтальных направлениях, где α и β — минимальные волновые числа. Горизонтальные границы области считаются изотермическими.

Исходная система уравнений в безразмерных переменных, записанная в отклонениях от равновесного решения, имеет вид [19]

$$u_x + v_y + w_z = 0,$$

$$u_t + \frac{1}{Pr}(uu_x + vu_y + wu_z) + P_x = \Delta u,$$

$$v_t + \frac{1}{Pr}(uv_x + vv_y + wv_z) + P_y = \Delta v,$$

$$w_t + \frac{1}{Pr}(uw_x + vw_y + ww_z) + P_z = \Delta w + Ra \cdot Q,$$

$$Q_t + \frac{1}{Pr}(uQ_x + vQ_y + wQ_z) = \frac{1}{Pr} \Delta Q + \frac{w}{Pr},$$
(2.1)

где u, v, w, p — компоненты вектора скорости и давление, Q — отклонение температуры от равновесного линейного профиля (полная температура равна $\Theta = 1 - y + Q$), $\Delta f = f_{xx} + f_{yy} + f_{zz}$ — оператор Лапласа, действующий на функцию f, $Ra = g\beta_t H^3 dQ/\chi\nu$ — число Рэлея, $Pr = \nu/\chi$ — число Прандтля, g — ускорение силы тяжести, β_t, ν, χ — коэффициенты теплового расширения, кинематической вязкости и температуропроводности, H — толщина слоя и dQ разность температур на горизонтальных границах, x, y и z — горизонтальные и вертикальная координаты. В дальнейшем для краткости будем называть Q и Θ температурой.

Двумерный аналог системы (2.1) получается, если в искомом решении пренебречь зависимостью от y, положить v = 0 и переписать систему (2.1) в переменных функция тока ϕ , вихрь ω и температура Q [16].

Двумерная и трехмерная конвекция рассматривается со свободными от касательных напряжений горизонтальными границами z = 0, 1:

 $\phi = \omega = Q = 0$ — в двумерном случае, в дальнейшем (2d, free) [16] и

 $u_z = v_z = w = Q = 0$ — в трехмерном (3d, free).

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145—156 _

Искомые величины u, v, w, p, Q разыскиваются в виде

$$u(t, x, y, z) = \sum_{k=1}^{K} \sum_{n=0}^{N} \sum_{m=0}^{M} u_{knm}(t) \rho_k \rho_n \rho_m \cos(\alpha kx) \cos(\beta ny) \cos(\pi mz),$$

$$v(t, x, y, z) = \sum_{k=1}^{K-1} \sum_{n=1}^{N-1} \sum_{m=0}^{M} v_{knm}(t) \rho_m \sin(\alpha kx) \sin(\beta ny) \cos(\pi mz),$$

$$w(t, x, y, z) = \sum_{k=1}^{K-1} \sum_{n=0}^{N} \sum_{m=1}^{M-1} w_{knm}(t) \rho_n \sin(\alpha kx) \cos(\beta ny) \sin(\pi mz),$$

$$p(t, x, y, z) = \sum_{k=1}^{K-1} \sum_{n=0}^{N} \sum_{m=0}^{M} p_{knm}(t) \rho_n \rho_m \sin(\alpha kx) \cos(\beta ny) \cos(\pi mz),$$

$$Q(t, x, y, z) = \sum_{k=1}^{K-1} \sum_{n=0}^{N} \sum_{m=1}^{M-1} Q_{knm}(t) \rho_n \sin(\alpha kx) \cos(\beta ny) \sin(\pi mz),$$

$$Q(t, x, y, z) = \sum_{k=1}^{K-1} \sum_{n=0}^{N} \sum_{m=1}^{M-1} Q_{knm}(t) \rho_n \sin(\alpha kx) \cos(\beta ny) \sin(\pi mz),$$

$$Q(t, x, y, z) = \sum_{k=1}^{K-1} \sum_{n=0}^{N} \sum_{m=1}^{M-1} Q_{knm}(t) \rho_n \sin(\alpha kx) \cos(\beta ny) \sin(\pi mz),$$

для (3d, free), где $\rho_k = 0, 5$ при k = 0, K и 1 при $1 \le k \le K - 1$. Представление решения для (2d, free) можно получить из (2.2) при n = 0 [16].

«Мягкие» граничные условия на боковых границах ставятся исходя из вида решения (2.2), например, при $x = 0, \pi/\alpha$ и $0 \leq y \leq \pi/\beta, 0 \leq z \leq 1$ из (2.2) получаем: $u_x = v = w = Q = 0$, что соответствует условиям на вертикальной плоскости, проходящей через центр конвективного вала параллельно его оси. А при $y = 0, \pi/\beta$ и $0 \leq x \leq \pi/\alpha, 0 \leq z \leq 1$ из (2) имеем: $u_y = v = w_y = Q_y = 0$ — условия на вертикальной границе конвективной ячейки. Некоторая искусственность такой постановки граничных условий обусловлена желанием обеспечить преемственность с двумерной постановкой при n = 0 [16,18], где дано сравнение с экспериментальными результатами при небольшой надкритичности.

Пусть $r = Ra/Ra_{cr}$ — надкритичность, где $Ra_{cr} = 657,511$ — критическое значение числа Рэлея.

3. Численный метод

Кратко опишем спектрально-разностный метод, используемый для решения системы (2.1). Двумерный вариант данного метода применялся для расчетов конвекции при высокой надкритичности со свободными и жесткими граничными условиями [18], описание метода расчета, результаты линейного и нелинейного (на модельной нелинейной системе уравнений) анализа, результаты тестовых расчетов приведены в [16,21].

Следуя общей идеологии метода расщепления, переход от слоя n к слою n + 1 по времени производится в три этапа. На первом этапе расщепления устанавливается соответствие в линейном приближении спектральных характеристик численного метода и дифференциальной задачи, на втором учитываются нелинейные члены и на третьем — восстанавливается выполнение уравнения неразрывности, нарушенное на втором этапе расщепления.

На первом этапе расщепления учитываем линейное развитие возмущений, без учета взаимодействия гармоник:

$$u_x + v_y + w_z = 0, \quad u_t + P_x = \frac{1}{2} \bigtriangleup u, \quad v_t + P_y = \frac{1}{2} \bigtriangleup v,$$

$$w_t + P_z = \frac{1}{2} \bigtriangleup w + Ra \cdot Q, \quad Q_t = \frac{1}{2 \cdot Pr} \bigtriangleup Q + \frac{w}{Pr}.$$
(3.1)

Для эффективного решения уравнений нелинейного конвективного переноса для u, v, w и Q, половина вязких членов учтена на втором этапе расчета. После подстановки решения (2.2) в систему (3.1) и исключения давления с помощью уравнения неразрывности вместо (3.1) получим систему из четырех обыкновенных дифференциальных уравнений для четырех неизвестных амплитуд: $u_{knm}, v_{knm}, w_{knm}$ и Q_{knm} . Полученная система обыкновенных дифференциальных уравнений решается аналитически, без применения каких-либо аппроксимаций по времени по формулам, выведенным программой аналитических вычислений Maple V R5.

На втором этапе учитывается нелинейный конвективный перенос, т. е. принимается во внимание взаимодействие гармоник:

$$u_t + \frac{1}{Pr}(uu_x + vu_y + wu_z) = \frac{1}{2} \bigtriangleup u,$$

$$v_t + \frac{1}{Pr}(uv_x + vv_y + wv_z) = \frac{1}{2} \bigtriangleup v,$$

$$w_t + \frac{1}{Pr}(uw_x + vw_y + ww_z) = \frac{1}{2} \bigtriangleup w,$$

$$Q_t + \frac{1}{Pr}(uQ_x + vQ_y + wQ_z) = \frac{1}{2 \cdot Pr} \bigtriangleup Q.$$

Здесь применена явная схема, с аппроксимацией направленными разностями первого порядка производных в нелинейных членах и поправкой А.А.Самарского, при достаточной разрешимости по пространству второго порядка точности [22].

На третьем этапе расщепления восстанавливается выполнение уравнения неразрывности, нарушенное на втором этапе:

$$\frac{u^{n+1} - u^{n+2/3}}{\tau} = -\operatorname{grad}(p), \quad \frac{\operatorname{div}(u^{n+2/3})}{\tau} = \Delta p.$$
(3.2)

Подстановкой в (3.2) решений в виде (2.2) система (3.2) приводится к системе алгебраических уравнений.

Пересчет искомых полей из спектрального пространства в физическое и обратно производился по стандартным программам быстрого преобразования Фурье по косинусам и синусам. Расчеты двумерной конвекции проводятся по подобной схеме, но без третьего этапа расщепления [21].

При обработке данных расчетов осреднением по времени и горизонтальным координатам вычисляется профиль средней температуры и находится поле температурных пульсаций в каждый момент времени. Затем, в трехмерном случае, одномерным преобразованием Фурье (по косинусам и синусам в горизонтальных направлениях и по синусам в вертикальном) и осреднением по всем однородным координатам квадратов амплитуд Фурье гармоник пульсаций находятся одномерные пространственные энергетические спектры [19]. В двумерном случае одномерные энергетические спектры находятся двумерным Фурье-преобразованием поля пульсаций (по косинусам и синусам в горизонтальном направлении и по синусам в вертикальном) и суммированием квадратов амплитуд Фурье-гармоник в одном из направлений. Например, для спектра, соответствующего горизонтальному направлению *x*, выражение принимает вид: $EQ_k = \langle \sum_{k=1}^{K-1} Q_{kn}'^2 \rangle$ — где угловые скобки означают осреднение по времени.

В трехмерных расчетах по полю температуры вычислялись одномерные пространственные спектры EQ_k и EQ_n для направлений x и y соответственно. В двумерных расчетах по полю температуры и скорости вычислялись спектры EQ_k , EV_k и EQ_m , EV_m для направлений x и z соответственно.

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145—156 __

Как и в [16,18,21], в данной работе полагалось $\alpha = \beta = 1$. Ниже всюду Pr = 10, за исключением данных на рис. 3 и 4, где для корректного сопоставления с экспериментом Pr = 0, 8.

Результаты тщательного тестирования вычислительного алгоритма для (2d, free) даны в [16]. Для проверки правильности работы вычислительного алгоритма для задачи (3d, free) проведены сравнения вычисленных средних величин на двумерном решении для (2d, free) и (3d, free) при r = 5. Использовалось [32x16] гармоник для (2d, free) и [32x8x16] — для (3d, free).

Вычисленное число Нуссельта

$$Nu(t) = \frac{\alpha}{2\pi} \int_{0}^{\pi/\alpha} (Q_z(t, x, 0) + Q_z(t, x, 1)) \, dx - 1$$

(для (3d, free) определяется по аналогии) после осреднения по времени отличалось на 1%, среднеквадратичная скорость — на 5,9% и среднеквадратичное значение температурных пульсаций — на 2,6% от характерной температуры. Такое совпадение можно считать неплохим для методов, использующих различные искомые переменные: функция тока, вихрь [16] и скорость, давление — в настоящей работе.

В двумерных расчетах использовалось: [65х17] гармоник — при $r < 10^3$, [129х33] — $10^3 \leq r \leq 6 \cdot 10^3$ и [257х65] гармоник — $6 \cdot 10^3 \leq r \leq 3, 4 \cdot 10^4$. Число Рейнольдса при этом не превосходит 375, и такая разрешимость достаточна [16]. Результаты, приведенные на рис. 4, рассчитаны с увеличенным числом гармоник [512х128].

Расчеты по (3d, free) проводились с разрешимостью [64х64х64], число Рейнольдса равно 40 при r = 950. Для проверки достаточности разрешимости проведены тестовые расчеты при r = 950 с числом гармоник [128х128х128] и [32х32х32]. По сравнению с данными расчета с разрешимостью [128х128х128] число Нуссельта отличалось на 3, 4%, среднеквадратичная скорость — на 7, 6% и среднеквадратичное значение температурных пульсаций — на 0, 36% от характерной температуры для числа гармоник [64х64х64] и на 13, 2, 18, 2 и 0, 56%, соответственно для для числа гармоник [32х32х32]. По приведенным средним характеристикам видна сходимость.

Профили средней температуры и среднеквадратичных температурных пульсаций при этом практически совпадали, наибольшие отклонения наблюдались для пульсаций скорости. На рис. 1 и 2 приведены профили среднеквадратичных пульсаций вертикальной (рис. 1) и горизонтальной (x — направление, рис. 2) скорости при r = 950. Из рис. 1 видно, что профили, рассчитанные с числом гармоник [128x128x128], [64x64x64] и [32x32x32], близки и на рис. 2 видна сходимость. Сходимость профилей пульсаций горизонтальной скорости, соответствующей *у*-направлению, выражена лучше.

Как показали методические расчеты, спектры являются очень консервативной характеристикой, медленно изменяющейся при изменении надкритичности и пространственной разрешимости, поэтому для исследования спектров достигнутая точность достаточна при двумерном и трехмерном моделировании.

4. Временной спектр пульсаций температуры

Приведем результаты сравнения рассчитанного временного энергетического спектра (квадрат модуля Фурье-преобразования функции времени) $E_t(f)$ пульсаций температуры в центре конвективной ячейки с экспериментальными данными по турбулентной конвекции газообразного гелия при 5°K [11].

НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145-156 _

Рис. 1. Профили среднеквадратичных пульсаций вертикальной скорости, рассчитанные с числом гармоник [128x128x128] (линия 1), [64x64x64] (2) и [32x32x32] (3)

Рис. 3. Временной спектр температурных пульсаций при r = 410, 1 — расчет по (3d, free), 2 — эксперимент [11] и 3 — f_d

Рис. 2. Профили среднеквадратичных пульсаций горизонтальной (x — направление) скорости, рассчитанные с числом гармоник [128x128x128] (линия 1), [64x64x64](2) и [32x32x32](3)

Рис. 4. Временной спектр температурных пульсаций при r = 6400, 1 — расчет по (2d, free), 2 — эксперимент [11] и 3 — f_d

Эксперименты проводились в цилиндрической ячейке из нержавеющей стали с аспектным отношением (диаметр отнесенный к высоте) 0,5 и критическим числом Рэлея 1, 7 · 10⁴ [23]. Расчеты проводились по трехмерной (3d, free) и двумерной (2d, free) моделям при совпадающей с экспериментом надкритичности и числе Прандтля. На рис. 3 и 4 частота f отложена в единицах ν/H^2 , расчетные и экспериментальные спектральные кривые нормированы так, чтобы интеграл по всем частотам был равен 1.

На рис. З приведены рассчитанный по (3d, free) временной спектр при r = 410 и экспериментальные данные [11]. Заметное отклонение наблюдается только на диссипативных частотах порядка $f_d = V \cdot Re^{3/4}/H$ [24], где V — среднеквадратичная скорость и $Re - VH/\nu$ — число Рейнольдса.

На рис. 4 экспериментальные данные [11] сравниваются с рассчитанными по (2d, free) модели при r = 6400. Как и на рис. 3, существенное отклонение только на высоких частотах порядка f_d . Для не слишком большой в горизонтальном направлении области данные расчетов по двумерной модели со свободными граничными условиями дают близкие к эксперименту зна-

НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145-156 _

чения числа Nu, профили средней температуры и температурных пульсаций даже при высокой надкритичности $r \sim 10^4$ [16], что с учетом уже отмеченной слабой зависимости анализируемых спектров от величины надкритичности, пространственной и временной разрешимости позволяет надеяться на правомерность такого сравнения.

5. Численное исследование пространственных спектров

Рассмотрим сначала одномерные пространственные энергетические спектры, полученные расчетом по двумерной модели (2d, free), соответствующие горизонтальному (рис. 5, 6 и 9) и вертикальному (рис. 7, 8 и 10) направлениям. Небольшие участки высокочастотного спектра на рис. 5, 6, 9–12 не приведены, ввиду их не информативности из-за искажения численными эффектами на краю спектра [25].

На рис. 5 и 6 представлены спектры пульсаций температуры EQ_k как функции от αk . При умеренно высокой надкритичности $500 \leq r \leq 10^3$ виден только спектр Колмогорова $k^{-5/3}$ (рис. 5), затем при $r \approx 10^3$ происходит перестройка с формированием двух интервалов со степенными законами $k^{-5/3}$ и $k^{-2,4}$ (рис. 6), а при $r \geq 2 \cdot 10^4$ в спектре пульсаций четко идентифицируется только один интервал со степенным законом $k^{-2,4}$.

Рис. 5. Пространственный спектр пульсаций температуры в горизонтальном направлении, 1 — расчет по (2d, free) при $r = 750, 2 - k^{-5/3}$

На рис. 7 и 8 представлены спектры пульсаций температуры EQ_m как функции от πm . Участки многозначности с двумя ветвями спектральных кривых на рис. 7 отражают разделение гармоник по виду их симметрии при еще недостаточно развитом турбулентном перемешивании. При надкритичности в интервале $10^3 \leq r \leq 1, 5 \cdot 10^4$ на ветвях спектральной кривой видны спектры Колмогорова $m^{-5/3}$ и $m^{-2,4}$ (рис. 7), но при $r \geq 1, 5 \cdot 10^4$ обе ветви следуют степенному закону $m^{-5/3}$ (рис. 8).

На рис. 9 представлен спектр пульсаций кинетической энергии EV_k . При $r \ge 10^3$ четко идентифицируется спектр БО $k^{-11/5}$ для пульсаций скорости.

На рис. 10 представлен спектр пульсаций кинетической энергии EV_m . При $r \ge 4 \cdot 10^3$ четко виден спектр m^{-5} , предсказанный теоретически для пульсаций скорости в жидкости с высоким числом Прандтля [19].

Теперь рассмотрим одномерные пространственные энергетические спектры температурных пульсаций, полученные расчетом по трехмерной (3d, free) модели при r = 950.

НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145–156 _

Рис. 7. Спектр температурных пульсаций в вертикальном направлении, 1 — расчет по (2d, free) при $r = 6 \cdot 10^3$, 2 — $m^{-5/3}$, 3 — $m^{-2,4}$

Рис. 9. Спектр пульсаций скорости в горизонтальном направлении, 1 — расчет по (2d, free) при $r=1250, 2-m^{-11/5}$

Рис. 8. Спектр температурных пульсаций в вертикальном направлении, 1 — расчет по (2d, free) при $r=3,4\cdot10^4,2-m^{-5/3},3-m^{-5/3}$

Рис. 10. Спектр пульсаций скорости в вертикальном направлении, 1 — расчет по (2d, free) при $r=3,4\cdot10^4,2-m^{-5},3-m^{-9}$

На рис. 11 и 12 приведены спектры температурных пульсаций, отвечающие горизонтальным x- (рис. 11) и y- (рис. 12) направлениям при r = 950. Четко идентифицируются спектры $k^{-2,4}$ (рис. 11) и $n^{-5/3}$ (рис. 12).

В заключение для двумерной задачи проанализируем характерные масштабы. Диссипативное волновое число может быть вычислено по формулам [1,16]:

$$k_d = 2\pi (\frac{(Nu-1)Ra}{Pr^2})^{0.25}$$

и с графической точностью во всем диапазоне изменения надкритичности представляется степенной зависимостью: $k_d = 11, 1 \cdot r^{0,319}$.

Волновое число Болджиано k_b , характеризующее точку смены механизма БО Колмогоровским, при этом сценарий БО может реализовываться при волновых числах меньших k_b , можно вычислить по формулам [12,16]:

$$k_b = 2\pi \left(\frac{PrRa}{Nu^2}\right)^{0.25}$$

при $600 \le r \le 34000$.

. НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145—156 ₋

Рис. 11. Спектр пульсаций температуры в горизонтальном направлении x, 1 — расчет по (3d, free) при $r = 950, 2 - k^{-5/3}, 3 - k^{-2,4}$

Рис. 12. Спектр температурных пульсаций в горизонтальном направлении y, 1 — расчет по (3d, free) при $r = 950, 2 - n^{-5/3}, 3 - n^{-2,4}$

Рис. 13. Максимальное волновое число k_{\max} (линия 1), волновые числа диссипации k_d (2) и Болджиано k_b (3)

На рис. 13 изображены как функции надкритичности: $k_{\max} = \max(\alpha K, \pi M) = \alpha K$ — наибольшее учитываемое волновое число (линия 1), волновые числа Болджиано k_b (2) и диссипации k_d (3).

При r = 1250 получим, что $\log k_b = 2,01$, и из рис. 9 видно, что степенной закон БО для скорости реализуется при волновых числах меньших k_b , что находится в полном соответствии с теоретическими рассмотрениями [19]. Это остается справедливым и при r = 34000.

6. Заключение

Временные спектры температурных пульсаций в центре конвективной ячейки, рассчитанные по трехмерной (3d, free) (r = 410) и двумерной (2d, free) (r = 6400) моделям согласуются с экспериментальными данными по турбулентной конвекции в газообразном криогенном He, заметные отклонения наблюдаются только на диссипативных частотах [11].

Для пульсаций скорости в двумерной постановке получены спектры БО для скорости $k^{-11/5}$ и k^{-5} . Спектр БО наблюдался в экспериментах по турбулентной конвекции [13,15], а k^{-5} — предсказан теоретически для конвекции в жидкости с высоким числом Прандтля [19].

Однако спектр Колмогорова $k^{-5/3}$, наблюдавшийся в расчетах [1—3], в настоящей работе получен не был, так же как и в немногих известных автору экспериментах по турбулентной конвекции, где исследовались спектры пульсаций скорости [13,15]. Отсутствие спектра Колмогорова для скорости в расчетах данной работы естественно и объясняется низким числом Рейнольдса (до 375 в двумерных и 40 — в трехмерных расчетах).

Для температурных пульсаций в двумерной и трехмерной постановках получены спектры Колмогорова $k^{-5/3}$ и $k^{-2,4}$. Эти спектры наблюдались в многочисленных экспериментах по турбулентной конвекции [11–14]. Однако спектр БО $k^{-7/5}$ для температурных пульсаций, наблюдавшийся в ряде экспериментальных работ [11,12,14], в настоящей работе получен не был, как и в большинстве известных автору численных исследований [1,2,4,10]. Исключение составляет расчетная работа [3], где спектр БО получен обработкой зависимостей температурных пульсаций от времени в фиксированных точках пространства (временные спектры).

Частичное подтверждение возможности одновременной реализации двух сценариев развития турбулентности (Колмогорова и БО) получено в эксперименте по конвекции глицерина в вертикальной тороидальной ячейке, где в зависимости от расположения датчиков термопар для температурных пульсаций реализуется спектр Колмогорова либо БО [20].

Формирование спектра Колмогорова $k^{-5/3}$ для температурных пульсаций кажется удивительным, так как реализация сценария Колмогорова предполагает наличие двух инерционных интервалов переноса энергий пульсаций температуры и скорости, с формированием одинаковых спектров $k^{-5/3}$. Но для пульсаций кинетической энергии спектр Колмогорова в этой серии расчетов не наблюдался.

Список литературы

- [1] Kerr R. M. Rayleigh Number Scaling in Numerical Convection, J. Fluid Mech., 1996, vol. 310, pp. 139–179.
- Malevsky A. V. Spline-characteristic method for simulation of convective turbulence, J. Comput. Phys., 1996, vol. 123, №2, pp. 466–475.
- [3] Verzicco R., Camussi R. Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell, *J. Fluid Mech.*, 2003, vol. 477, pp. 19–49.
- [4] Malevsky A. V., Yuen D. A. Characteristics-based methods applied to infinite Prandtl number thermal convection in the hard turbulent regime, *Phys. Fluids. A.*. 1991, vol. 3, №9, pp. 2105–2115.
- [5] Shishkina O., Wagner C. Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection, *J. Fluid Mech.*, 2006, vol. 546, pp. 51–60.
- [6] Cortese T., Balachandar S. Vortical nature of thermal plumes in turbulent convection, *Phys. Fluids. A.*, 1993, vol. 5, №12, pp. 3226–3232.
- [7] Werne J. Structure of hard-turbulent convection in two dimensions: Numerical evidence, *Phys. Rev. E.*, 1993, vol. 48, №2, pp. 1020–1035.
- [8] Curry J. H., Herring J. R., Loncaric J., Orszag S. A. Order and disorder in two-and three-dimensional Benard convection, *J. Fluid Mech.*, 1984, vol. 147, pp. 1–38.
- [9] Герценштейн С. Я., Родичев Е. Б., Шмидт В. М. Взаимодействие трехмерных волн во вращающемся горизонтальном слое жидкости, подогреваемом снизу, Докл. АН СССР, 1978, т. 238, №3, с. 545–548.
- [10] Grotzbach G. Spatial resolution requirements for direct numerical simulation of the Rayleigh–Benard convection, J. Comp. Phys., 1983, vol. 49, pp. 241–264.

. НЕЛИНЕЙНАЯ ДИНАМИКА, 2008, Т. 4, №2, с. 145-156 _

- [11] Wu X.-Z., Kadanoff L., Libchaber A., Sano M. Frequency power spectrum of temperature fluctuations in free convection, *Phys. Rev. Lett.*, 1990, vol. 64, №18, pp. 2140–2143.
- [12] Cioni S., Ciliberto S., Sommeria J. Temperature structure functions in turbulent convection at low Prandtl number, *Europhys. Lett.*, 1995, vol. 32, №5, pp. 413–418.
- [13] Ashkenazi S., Steinberg V. Spectra and statistics of velocity and temperature fluctuations in turbulent convection, *Phys. Rev. Lett.*, 1999, vol. 83, №23, pp. 4760–4763.
- [14] Niemela J. J., Skrbek L., Sreenivasan K. R., Donnelly R. J. Turbulent convection at very high Rayleigh numbers, *Nature*, 2000, vol. 404, №20, pp. 837–840.
- [15] Shang X.-D., Xia K.-Q. Scaling of the velocity power spectra in turbulent thermal convection, *Phys. Rev. E.*, 2001, vol. 64, pp. 065301–1–065301–4.
- [16] Палымский И.Б. Численное моделирование двумерной конвекции при высокой надкритичности, *Успехи механики*, 2006, №4, с. 3–28.
- [17] Гетлинг А. В. Конвекция Рэлея-Бенара. Структуры и динамика, М.: Эдиториал УРСС, 1999, 247 с.
- [18] Палымский И. Б. Численное моделирование двумерной конвекции, роль граничных условий, *Известия РАН. МЖГ*, 2007, №4, с. 61–71.
- [19] Фрик П. Г. *Турбулентность: подходы и модели*, Москва–Ижевск: Институт компьютерных исследований, 2003, 292 с.
- [20] Браже Р. А., Куделин О. Н. Экспериментальная реализация модели Лоренца конвективной неустойчивости жидкости в вертикальной тороидальной ячейке, Изв. вузов. ПНД, 2006, т. 14, №6, с. 88–98.
- [21] Палымский И. Б. Линейный и нелинейный анализ численного метода расчета конвективных течений, *Сиб. ж. вычисл. математики*, 2004, т. 7, №2, с. 143–163.
- [22] Пасконов В. М., Полежаев В. И., Чудов Л. А. Численное моделирование процессов тепло- и массообмена, М.: Наука, 1984, 285 с.
- [23] Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости, М.: Наука, 1972, 392 с.
- [24] Ландау Л. Д., Лифшиц Е. М. Гидродинамика, М.: Наука, 1988, 733 с.
- [25] Рождественский Б. Л., Яненко Н. Н. Системы квазилинейных уравнений и их приложения к газовой динамике, 2-е изд., М.: Наука, 1978, 687 с.