Impact Factor

    Transitory Shift in the FitzHugh – Nagumo Model

    2018, Vol. 14, no. 2, pp.  169-177

    Author(s): Morozov K. E.

    A nonautonomous analogue of the FitzHugh–Nagumo model is considered. It is supposed that the system is transitory, i.e., it is autonomous except on some compact interval of time. We first study the past and future vector fields that determine the system outside the interval of time dependence. Then we build the transition map numerically and discuss the influence of the transitory shift on the solutions behavior.
    Keywords: FitzHugh – Nagumo model, transitory system, separatrix, limit cycles, attractors
    Citation: Morozov K. E., Transitory Shift in the FitzHugh – Nagumo Model, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 2, pp.  169-177

    Download File
    PDF, 278.38 Kb


    [1] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544  crossref
    [2] FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466  crossref
    [3] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, 521 pp.  mathscinet
    [4] Mosovsky, B. A. and Meiss, J. D., “Transport in Transitory Dynamical Systems”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 35–65  crossref  mathscinet  zmath
    [5] Morozov, A. D. and Morozov, K. E., “Transitory Shift in the Flutter Problem”, Nelin. Dinam., 11:3 (2015), 447–457 (Russian)  mathnet  crossref  mathscinet  zmath
    [6] Morozov, A. D., Morozov, K. E., “Transitory Shift in the Pendular Type Equations”, Nelin. Dinam., 12:4 (2016), 577–589  mathnet  crossref  mathscinet
    [7] Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N., The FitzHugh – Nagumo Model: Bifurcation and Dynamics, Springer, Dordrecht, 2000, xii, 238 pp.  mathscinet
    [8] Ringkvist, M. and Zhou, Y., “On the Dynamical Behaviour of FitzHugh – Nagumo Systems: Revisited”, Nonlinear Anal., 71:7–8 (2009), 2667–2687  crossref  mathscinet  zmath  elib
    [9] Prokin, I. S., Simonov, A. U., and Kazancev, V. B., Mathematical Modelling of Neurodynamical Systems, Nighegorodsk. Univ., Nighny Novgorod, 2012, 41 pp. (Russian)
    [10] Bautin, N. N., Behavior of Dynamical Systems near to the Boundaries of Stability, Nauka, Moscow, 1984, 176 pp. (Russian)  mathscinet
    [11] Andronov, A. A., Leontovich, E. A., Gordon, I. I., and Maier, A. G., Theory of Bifurcations of Dynamic Systems on a Plane, Wiley, New York, 1973, xiv+482 pp.  mathscinet
    [12] Mishenko, E. F. and Rozov, N. Kh., Differential Equations with Small Parameters and Relaxation Ocsillations, Plenum, New York, 1980, 228 pp.  mathscinet

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License