Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle

    Received 02 November 2024; accepted 17 December 2024; published 28 December 2024

    2024, Vol. 20, no. 5, pp.  961-978

    Author(s): Smirnov V. N., Kazistova K. M., Sudakov I. A., Leplat V., Gasnikov A. V., Lobanov A. V.

    Black-box optimization, a rapidly growing field, faces challenges due to limited knowledge of the objective function’s internal mechanisms. One promising approach to addressing this is the Stochastic Order Oracle Concept. This concept, similar to other Order Oracle Concepts, relies solely on relative comparisons of function values without requiring access to the exact values. This paper presents a novel, improved estimation of the covariance matrix for the asymptotic convergence of the Stochastic Order Oracle Concept. Our work surpasses existing research in this domain by offering a more accurate estimation of asymptotic convergence rate. Finally, numerical experiments validate our theoretical findings, providing strong empirical support for our proposed approach.
    Citation: Smirnov V. N., Kazistova K. M., Sudakov I. A., Leplat V., Gasnikov A. V., Lobanov A. V., Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle, Rus. J. Nonlin. Dyn., 2024, Vol. 20, no. 5, pp.  961-978
    DOI:10.20537/nd241219


    Download File
    PDF, 484.67 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License