Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System
2019, Vol. 15, no. 4, pp. 561-568
Author(s): Mashtakov A. P.
Download File PDF, 4.77 Mb |
References |
|
[1] |
Bekkers, E. J., Duits, R., Mashtakov, A., and Sanguinetti, G. R., “A PDE Approach to Data-Driven Sub-Riemannian Geodesics in ![]() ![]() ![]() ![]() |
[2] |
Duits, R., Ghosh, A., Dela Haije, T., and Mashtakov, A., “On Sub-Riemannian Geodesics in ![]() ![]() ![]() ![]() |
[3] |
Mashtakov, A. P. and Popov, A. Yu., “Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space”, Regul. Chaotic Dyn., 22:8 (2017), ![]() ![]() ![]() ![]() |
[4] |
Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on ![]() ![]() ![]() ![]() |
[5] |
Franceschiello, B., Mashtakov, A., Citti, G., and Sarti, A., “Geometrical Optical Illusion via Sub-Riemannian Geodesics in the Roto-Translation Group”, Differential Geom. Appl., 65 (2019), ![]() ![]() ![]() |
[6] |
Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003), ![]() |
[7] |
Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006), ![]() ![]() |
[8] |
Tax, C. M., Duits, R., Vilanova, A., ter Haar Romeny, B. M., Hofman, P., Wagner, L., Leemans, A., and Ossenblok, P., “Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery”, PLoS ONE, 9:7 (2014), e101524 ![]() ![]() ![]() |
[9] |
Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, xx+259 pp. ![]() ![]() |
[10] |
Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 ![]() ![]() ![]() |
[11] |
Sachkov, Yu. L., “Control Theory on Lie Groups”, J. Math. Sci. (N. Y.), 156:3 (2009), ![]() ![]() ![]() ![]() |
[12] | Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry from Hamiltonian Viewpoint, hal-02019181 https://hal.archives-ouvertes.fr/hal-02019181 (to appear) |
[13] |
Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monogr. Appl. Comput. Math., 3, 2nd ed., Cambridge Univ. Press, Cambridge, 1999, xx+378 pp. ![]() ![]() ![]() |
[14] |
Mirebeau, J.-M., “Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction”, SIAM J. Numer. Anal., 52:4 (2014), ![]() ![]() ![]() |
[15] |
Sanguinetti, G., Duits, R., Bekkers, E., Janssen, M. H. J., Mashtakov, A., and Mirebeau, J. M., “Sub-Riemannian Fast Marching in ![]() ![]() |
[16] |
Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M., “Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis”, J. Math. Imaging Vis., 60:6 (2018), ![]() ![]() ![]() |
[17] |
Bekkers, E., Duits, R., Berendschot, T., and Romeny, B. H., “A Multi-Orientation Analysis Approach to Retinal Vessel Tracking”, J. Math. Imaging Vis., 49:3 (2014), ![]() ![]() ![]() |
[18] |
Peyré, G., Péchaud, M., Keriven, R., and Cohen, L. D., “Geodesic Methods in Computer Vision and Graphics”, Found. Trends Comput. Graph. Vis., 5:34 (2010), |

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License