León-Ramírez Alejandro

    2163807469@alumnos.cua.uam.mx

    Публикации:

    , Ле&оацуте;н-Рам&иацуте;рез А., Чац&оацуте;н-Ацоста Г.
    Подробнее
    Recently, motivated by the interest in the problems of nonlinear dynamics of cylindrical shells, A. I. Zemlyanukhin et al. (Nonlinear Dyn, 98, 185–194, 2019) established the so-called Schamel – Kawahara equation (SKE). The SKE generalizes the well-known nonlinear Schamel equation that arises in plasma physics problems, by adding the high-order dispersive terms from the Kawahara equation. This article presents families of new solutions to the Schamel – Kawahara model using the Kudryashov method. By performing the symbolic computation, we show that this method is a valuable and efficient mathematical tool for solving application problems modeled by nonlinear partial differential equations (NPDE).
    Ключевые слова: Schamel – Kawahara equation, Kudryashov method, exact solutions, nonlinear PDE
    Цитирование: , Ле&оацуте;н-Рам&иацуте;рез А., Чац&оацуте;н-Ацоста Г.,  Application of the Kudryashov Method for Finding Exact Solutions of the Schamel – Kawahara Equation, Нелинейная динамика, 2022, Vol. 18, no. 2, с.  203-215
    DOI:10.20537/nd220204

    Вернуться к списку