Quantum chaos

    2006, Vol. 2, No. 2, pp.  214-235

    Author(s): Steiner F.

    A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formula is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found.
    Keywords: quantum chaos, billiard, integrable system, torus
    Citation: Steiner F., Quantum chaos, Rus. J. Nonlin. Dyn., 2006, Vol. 2, No. 2, pp.  214-235

    Download File
    PDF, 253.62 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License