Rolling of a heterotgeneous ball over a sphere without sliding and spinning

    2006, Vol. 2, No. 4, pp.  445-452

    Author(s): Borisov A. V., Mamaev I. S.

    Consider the problem of rolling a dynamically asymmetric balanced ball (the Chaplygin ball) over a sphere. Suppose that the contact point has zero velocity and the projection of the angular velocity to the normal vector of the sphere equals zero. This model of rolling differs from the classical one. It can be realized, in some approximation, if the ball is rubber coated and the sphere is absolutely rough. Recently, Koiller and Ehlers pointed out the measure and the Hamiltonian structure for this problem. Using this structure we construct an isomorphism between this problem and the problem of the motion of a point on a sphere in some potential field. The integrable cases are found.
    Keywords: Chaplygin ball, rolling model, Hamiltonian structure
    Citation: Borisov A. V., Mamaev I. S., Rolling of a heterotgeneous ball over a sphere without sliding and spinning, Rus. J. Nonlin. Dyn., 2006, Vol. 2, No. 4, pp.  445-452

    Download File
    PDF, 162.92 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License