0
2013
Impact Factor

    Lagrange’s identity and its generalizations

    2008, Vol. 4, No. 2, pp.  157-168

    Author(s): Kozlov V. V.

    The famous Lagrange identity expresses the second derivative of the moment of inertia of a system of material points through the kinetic energy and homogeneous potential energy. The paper presents various extensions of this brilliant result to the case 1) of constrained mechanical systems, 2) when the potential energy is quasi-homogeneous in coordinates and 3) of continuumof interacting particles governed by the well-known Vlasov kinetic equation.
    Keywords: Lagrange’s identity, quasi-homogeneous function, dilations, Vlasov’s equation
    Citation: Kozlov V. V., Lagrange’s identity and its generalizations, Rus. J. Nonlin. Dyn., 2008, Vol. 4, No. 2, pp.  157-168
    DOI:10.20537/nd0802004


    Download File
    PDF, 128.42 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License