Impact Factor

    Notes on integrable systems

    2013, Vol. 9, No. 3, pp.  459-478

    Author(s): Kozlov V. V.

    The problem of integrability conditions for systems of differential equations is discussed. Darboux’s classical results on the integrability of linear non-autonomous systems with an incomplete set of particular solutions are generalized. Special attention is paid to linear Hamiltonian systems. The paper discusses the general problem of integrability of the systems of autonomous differential equations in an $n$-dimensional space which permit the algebra of symmetry fields of dimension $\geqslant n$. Using a method due to Liouville, this problem is reduced to investigating the integrability conditions for Hamiltonian systems with Hamiltonians linear in the momentums in phase space of dimension that is twice as large. In conclusion, the integrability of an autonomous system in three-dimensional space with two independent non-trivial symmetry fields is proved. It should be emphasized that no additional conditions are imposed on these fields.
    Keywords: integrability by quadratures, adjoint system, Hamilton equations, Euler–Jacobi theorem, Lie theorem, symmetries
    Citation: Kozlov V. V., Notes on integrable systems, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 3, pp.  459-478

    Download File
    PDF, 375.2 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License