Stationary Modes and Localized Metastable States in a Triangular Lattice of Active Particles

    Received 06 April 2018

    2018, Vol. 14, no. 2, pp.  195-207

    Author(s): Sergeev K. S., Dmitriev S. V., Korznikova E. A., Chetverikov A. P.

    The dynamics of a triangular lattice consisting of active particles is studied. Particles with nonlinear friction interact via nonlinear forces of Morse potential. Nonlinear friction slows down fast particles and accelerates slow ones. Each particle interacts mainly with the nearest neighbors due to the choice of the cut-off radius.
    Stationary modes (attractors) and metastable states of the lattice are studied by methods of numerical simulation.
    It is shown that the main attractor of the system under consideration is the so-called translational mode — the state with equal and unidirectional velocities of all particles. For some parameter values translational modes with defects in the form of vacancies and interstitial particles are possible.
    Metastable localized states are presented by the plane soliton-like waves (M-solitons) with inherent velocity and density maxima. The lifetime of such states depends on the lattice parameters and the wavefront width. All metastable states transform into the translational mode after a transient process.
    Keywords: lattices, active particles, solitons, Morse potential
    Citation: Sergeev K. S., Dmitriev S. V., Korznikova E. A., Chetverikov A. P., Stationary Modes and Localized Metastable States in a Triangular Lattice of Active Particles, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 2, pp.  195-207

    Download File
    PDF, 13.59 Mb


    [1] Romanczuk, P., Bar, M., Ebeling, W., Lindner, B., and Schimansky-Geier, L., “Active Brownian Particles: From Individual to Collective Stochastic Dynamics”, Eur. Phys. J. Special Topics, 202:1 (2012), 1–162  crossref  adsnasa
    [2] Saintillan, D. and Shelley, M. J., “Instabilities and Pattern Formation in Active Particle Suspensions: Kinetic Theory and Continuum Simulations”, Phys. Rev. Lett., 100:17 (2008), 178103, 4 pp.  crossref  adsnasa
    [3] Farrell, F. D. C., Marchetti, M. C., Marenduzzo, D., and Tailleur, J., “Pattern Formation in Self-Propelled Particles with Density-Dependent Motility”, Phys. Rev. Lett., 108:24 (2012), 248101, 5 pp.  crossref  adsnasa  elib
    [4] Schweitzer, F., Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences, Springer, Berlin, 2003, XVI, 421 pp.  mathscinet  zmath
    [5] Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, Ch., Volpe, Giorgio, and Volpe, Giovanni, “Active Particles in Complex and Crowded Environments”, Rev. Modern Phys., 88:4 (2016), 045006, 50 pp.  crossref  mathscinet  adsnasa  elib
    [6] Marchetti, M., Fily, Ya., Henkes, S., Patch, A., and Yllanes, D., “Minimal Model of Active Colloids Highlights the Role of Mechanical Interactions in Controlling the Emergent Behavior of Active Matter”, Curr. Opin. Colloid Interface Sci., 21 (2016), 34–43  crossref
    [7] Balboa Usabiaga, F., Kallemov, B., Delmotte, B., Bhalla, A. P. S., Griffith, B. E., and Donev, A., “Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach”, Commun. Appl. Math. Comput. Sci., 11:2 (2016), 217–296  crossref  mathscinet
    [8] Alarcón, F. and Pagonabarraga, I., “Spontaneous Aggregation and Global Polar Ordering in Squirmer Suspensions”, J. Mol. Liq., 185 (2013), 56–61  crossref
    [9] Romensky, M., Scholz, D., and Lobaskin, V., “Hysteretic Dynamics of Active Particles in a Periodic Orienting Field”, J. R. Soc. Interface, 12:108 (2015), 20150015  crossref
    [10] Wensink, H. H., Kantsler, V., Goldstein, R. E., and Dunkel, J., “Controlling Active Self-Assembly through Broken Particle-Shape Symmetry”, Phys. Rev. E, 89:1 (2014), 010302(R), 5 pp.  crossref  adsnasa
    [11] Sergeev, K. S., Vadivasova, T. E., and Chetverikov, A. P., “Noise-Induced Transition in a Small Ensemble of Active Brownian Particles”, Tech. Phys. Lett., 40:11 (2014), 976–979  crossref  adsnasa  elib; Pis'ma Zh. Tekh. Fiz., 40:21 (2014), 88–96
    [12] Suchkov, S. V., Sukhorukov, A. A., Huang, J., Dmitriev, S. V., Lee, C., and Kivshar, Yu. S., “Nonlinear Switching and Solitons in PT-Symmetric Photonic Systems”, Laser Photonics Rev., 10:2 (2016), 177–213  crossref  adsnasa  elib
    [13] Barashenkov, I. V., Suchkov, S. V., Sukhorukov, A. A., Dmitriev, S. V., and Kivshar, Yu. S., “Breathers in PT-Symmetric Optical Couplers”, Phys. Rev. A, 86:5 (2012), 053809, 12 pp.  crossref  mathscinet  adsnasa  elib
    [14] Saadatmand, D., Borisov, D. I., Kevrekidis, P. G., Zhou, K., and Dmitriev, S. V., “Resonant Interaction of ϕ4 Kink with PT-Symmetric Perturbation with Spatially Periodic Gain/Loss Coefficient”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 62–76  crossref  mathscinet  adsnasa  elib
    [15] Borisov, D. I. and Dmitriev, S. V., “On the Spectral Stability of Kinks in 2D Klein – Gordon Model with Parity-Time-Symmetric Perturbation”, Stud. Appl. Math., 138:3 (2017), 317–342  crossref  mathscinet  zmath  elib
    [16] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., Kevrekidis, P. G., Fatykhov, M. A., and Javidan K., “Effect of the ϕ4 Kink's Internal Mode at Scattering on a PT-Symmetric Defect”, JETP Lett., 101:7 (2015), 497–502  mathnet  crossref  mathscinet  adsnasa; Pis'ma v Zh. Èksper. Teoret. Fiz., 101:7 (2015), 550–555
    [17] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., Kevrekidis, P. G., Fatykhov, M. A., and Javidan K., “Kink Scattering from a Parity-Time-Symmetric Defect in the ϕ4 Model”, Commun. Nonlinear Sci. Numer. Simul., 29:1–3 (2015), 267–282  crossref  mathscinet  elib
    [18] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P. G., “Interaction of sine-Gordon Kinks and Breathers with a Parity-Time-Symmetric Defect”, Phys. Rev. E, 90:5 (2014), 052902, 10 pp.  crossref  adsnasa  elib
    [19] Takatori, S. C. and Brady, J. F., “A Theory for the Phase Behavior of Mixtures of Active Particles”, Soft Matter, 11:40 (2015), 7920–7931  crossref  adsnasa
    [20] Mallory, S. A., Valeriani, C., and Cacciuto, A., “Anomalous Dynamics of an Elastic Membrane in an Active Fluid”, Phys. Rev. E, 92:1 (2015), 012314, 6 pp.  crossref  mathscinet  adsnasa  elib
    [21] Huepe, C., Ferrante, E., Wenseleers, T., and Turgut, A. E., “Scale-Free Correlations in Flocking Systems with Position-Based Interactions”, J. Stat. Phys., 158:3 (2015), 549–562  crossref  mathscinet  zmath  adsnasa
    [22] Ferrante, E., Turgut, A. E., Dorigo, M., and Huepe, C., “Collective Motion Dynamics of Active Solids and Active Crystals”, New J. Phys., 15 (2013), 095011, 20 pp.  crossref
    [23] Jones, J. E., “On the Determination of Molecular Fields: 2. From the Equation of State of a Gas”, Proc. Roy. Soc. London Ser. A, 106:738 (1924), 463–477  crossref  adsnasa
    [24] Morse, Ph. M., “Diatomic Molecules According to the Wave Mechanics: 2. Vibrational Levels”, Phys. Rev., 34:1 (1929), 57–64  crossref  zmath  adsnasa
    [25] Chetverikov, A. P., Ebeling, W., and Velarde, M. G., “Localized Nonlinear, Soliton-Like Waves in Two-Dimensional Anharmonic Lattices”, Wave Motion, 48:8 (2011), 753–760  crossref  mathscinet  zmath  elib
    [26] Ikeda, K., Doi, Y., Feng, B.-F., and Kawahara, T., “Chaotic Breathers of Two Types in a Two-Dimensional Morse Lattice with an On-Site Harmonic Potential”, Phys. D, 225:2 (2007), 184–196  crossref  mathscinet  zmath  elib
    [27] Chetverikov, A. P., Ebeling, W., and Velarde, M. G., “Soliton-Like Excitations and Solectrons in Two-Dimensional Nonlinear Lattices”, Eur. Phys. J. B, 80:2 (2011), 137–145  crossref  adsnasa
    [28] Chetverikov, A. P., Ebeling, W., and Velarde, M. G., “Properties of Nano-Scale Soliton-Like Excitations in Two-Dimensional Lattice Layers”, Phys. D, 240:24 (2011), 1954–1959  crossref  elib
    [29] Korznikova, E. A., Fomin, S. Yu., Soboleva, E. G., and Dmitriev, S. V., “Highly Symmetric Discrete Breather in a Two-Dimensional Morse Crystal”, JETP Lett., 103:4 (2016), 277–281  mathnet  crossref  adsnasa; Pis'ma v Zh. Èksper. Teoret. Fiz., 103:4 (2016), 303–308
    [30] Chetverikov, A. P., Shepelev, I. A., Korznikova, E. A., Kistanov, A. A., Dmitriev, S. V., and Velarde, M. G., “Breathing Subsonic Crowdion in Morse Lattices”, Comput. Condens. Matter, 13 (2017), 59–64  crossref  elib
    [31] Dmitriev, S. V., Medvedev, N. N., Chetverikov, A. P., Zhou, K., and Velarde, M. G., “Highly Enhanced Transport by Supersonic N-Crowdions”, Phys. Status Solidi RRL, 11:12 (2017), 1700298, 5 pp.  crossref
    [32] Dmitriev, S. V., Korznikova, E. A., and Chetverikov, A. P., “Supersonic N-Crowdions in a Two-Dimensional Morse Crystal”, JETP, 126:3 (2018), 347–352  crossref  adsnasa; Zh. Èksper. Teoret. Fiz., 153:3 (2018), 417–423 (Russian)
    [33] Korznikova, E. A., Bachurin, D. V., Fomin, S. Yu., Chetverikov, A. P., and Dmitriev, S. V., “Instability of Vibrational Modes in Hexagonal Lattice”, Eur. Phys. J. B, 90:2 (2017), 23, 8 pp.  crossref  adsnasa
    [34] Korznikova, E. A., Kistanov, A. A., Sergeev, K. S., Shepelev, D. A., Davletshin, A. R., Bokii, D. I., and Dmitriev, S. V., “The Reason for Existence of Discrete Breathers in 2D and 3D Morse Crystals”, Letters on Materials, 6:3 (2016), 221–226 (Russian)  crossref
    [35] Dmitriev, S. V., Korznikova, E. A., Baimova, Yu. A., and Velarde, M. G., “Discrete Breathers in Crystals”, Physics-Uspekhi, 59:5 (2016), 446–461  mathnet  crossref  adsnasa  elib; Uspekhi Fiz. Nauk, 186:5 (2016), 471–488 (Russian)  crossref
    [36] Makarov, V. A., del Rio, E., Ebeling, W., Velarde, M. G., “Dissipative Toda – Rayleigh Lattice and Its Oscillatory Modes”, Phys. Rev. E, 64:3 (2001), 036601, 14 pp.  crossref  adsnasa
    [37] Ebeling, W., Landa, P. S., and Ushakov, V. G., “Self-Oscillations in Ring Toda Chains with Negative Friction”, Phys. Rev. E, 63:4 (2001), 046601, 8 pp.  crossref  adsnasa
    [38] del Rio, E., Makarov, V. A., Velarde, M. G., and Ebeling, W., “Mode Transitions and Wave Propagation in a Driven-Dissipative Toda – Rayleigh Ring”, Phys. Rev. E, 67:5 (2003), 056208, 9 pp.  crossref  adsnasa
    [39] Sergeev, K. S. and Chetverikov, A. P., “Metastable States in the Morse – Rayleigh Chain”, Nelin. Dinam., 12:3 (2016), 341–353 (Russian)  mathnet  crossref  mathscinet
    [40] Velarde, M. G., “Solitons as Dissipative Structures”, Int. J. Quant. Chem., 98:2 (2004), 272–280  crossref
    [41] Chetverikov, A. P., Ebeling, W., Velarde, M. G., “Solitons and Clusters in One-Dimensional Ensembles of Interacting Brownian Particles”, Izv. SGU. Novaya Seriya. Fizika, 6:1–2 (2006), 28–41 (Russian)

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License