|
References
|
|
[1] |
Haberman, R. and Ho, E. K., “Boundary of the Basin of Attraction for Weakly Damped Primary Resonance”, Trans. ASME J. Appl. Mech., 62:4 (1995), 941–946 |
[2] |
Itin, A. P., Neishtadt, A. I., and Vasiliev, A. A., “Capture into Resonance in Dynamics of a Charged Partice in Magnetic Field and Electrostatic Wave”, Phys. D, 141:3–4 (2000), 281–296 |
[3] |
Kiselev, O. M. and Glebov, S. G., “An Asymptotic Solution Slowly Crossing the Separatrix near a Saddle-Centre Bifurcation Point”, Nonlinearity, 16:1 (2003), 327–362 |
[4] |
Bautin, N. N. and Leontovich, E. A., Methods and Ways of the Qualitative Analysis of Dynamical Systems in a Plane, 2nd ed., Nauka, Moscow, 1990, 496 pp. (Russian) |
[5] |
Borich, M. A., Bunkov, M. Yu., Kurkin, M. I., and Tankeyev, A. P., “Nuclear Magnetic Relaxation Induced by the Relaxation of Electron Spins”, JETP Lett., 105:1 (2017), 21–25 ; Pis'ma v Zh. Èksper. Teoret. Fiz., 105:1 (2017), 23–27 (Russian) |
[6] |
Gurevich, A. G. and Melkov, G. A., Magnetization Oscillations and Waves, CRC, New York, 1996, 464 pp. |
[7] |
Kalyakin, L. A., “Analysis of the Bloch Equations for the Nuclear Magnetization Model”, Proc. Steklov Inst. Math., 281:1 (2013), S64–S81 |
[8] |
Kalyakin, L. A., Sultanov, O. A., and Shamsutdinov, M. A., “Asymptotic Analysis of a Model of Nuclear Magnetic Autoresonance”, Theoret. and Math. Phys., 167:3 (2011), 762–771 ; Teoret. Mat. Fiz., 167:3 (2011), 420–431 (Russian) |
[9] |
Kalyakin, L. A. and Shamsutdinov, M. A., “Adiabatic Approximations for Landau – Lifshitz Equations”, Proc. Steklov Inst. Math., 259:2 (2007), S124–S140 |
[10] |
Monosov, Ya. A., Nonlinear Ferromagnetic Resonance, Nauka, Moscow, 1971, 376 pp. (Russian) |
[11] |
Nemytskii, V. V. and Stepanov, V. V., Qualitative Theory of Differential Equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, N.J., 1960, viii+523 pp. |