0
2013
Impact Factor

    Efficiency of a Three-Particle Energy Sink: Experimental Study and Numerical Simulation

    2018, Vol. 14, no. 3, pp.  355-366

    Author(s): Kevorkov S. S., Khamidullin R. K., Koroleva (Kikot) I. P., Smirnov V. V., Gusarova E. B., Manevitch L. I.

    The results of an experimental and numerical investigation of the dynamics of a string with three uniformly distributed discrete masses are presented. This system can be used as a resonant energy sink for protecting structural elements from the effects of undesirable dynamic loads over a wide frequency range. Preliminary studies of the nonlinear dynamics of the system under consideration showed its high energy capacity. In this paper, we present the results of an experimental study in which a shaker’s table mounted cantilever beam was being protected. As a result, the efficiency of the sink was confirmed, and data were also obtained to refine the mathematical model. It was shown that the experimental data obtained are in good agreement with the results of computer simulation.
    Keywords: nonlinear dynamics, nonlinear normal mode, limiting phase trajectory, energy exchange, localization
    Citation: Kevorkov S. S., Khamidullin R. K., Koroleva (Kikot) I. P., Smirnov V. V., Gusarova E. B., Manevitch L. I., Efficiency of a Three-Particle Energy Sink: Experimental Study and Numerical Simulation, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 3, pp.  355-366
    DOI:10.20537/nd180306


    Download File
    PDF, 9.38 Mb

    References

    [1] Den Hartog, J. P., Mechanical Vibrations, 4th ed., McGraw-Hill Book Company, New York, 1956, 436 pp.
    [2] Gendelman, O. V., “Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators”, Nonlinear Dyn., 25:1–3 (2001), 237–253  crossref  zmath
    [3] Manevitch, L. I., Gourdon, E., and Lamarque, C.-H., “Towards the Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-Degree-of-Freedom System”, J. Appl. Mech., 74:6 (2007), 1078–1086  crossref  mathscinet
    [4] Gendelman, O. V., Manevitch, L. I., Vakakis, A. F., and M'Closkey, R., “Energy Pumping in Nonlinear Mechanical Oscillators: Part 1. Dynamics of the Underlying Hamiltonian Systems”, J. Appl. Mech., 68:1 (2001), 34–41  crossref  mathscinet  zmath
    [5] Vakakis, A. F., Gendelman, O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., and Lee, Y. S., Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Springer, Dordrecht, 2009
    [6] Manevitch, L. I., Kovaleva, A., Smirnov, V., and Starosvetsky, Yu., “Quasi-One-Dimensional Nonlinear Lattices”, Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures, Springer, Singapore, 2018, 85–140  crossref  mathscinet
    [7] Gourdon, E., Lamarque, C.-H., and Pernot, S., “Contribution to Efficiency of Irreversible Passive Energy Pumping with a Strong Nonlinear Attachment”, Nonlinear Dyn., 50:4 (2007), 793–808  crossref  mathscinet  zmath
    [8] Jiang, X., McFarland, D. M., Bergman, L. A., and Vakakis, A. F., “Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results”, Nonlinear Dyn., 33:1 (2003), 87–102  crossref  mathscinet  zmath
    [9] Koroleva (Kikot), I. P. and Manevitch, L. I., “Oscillatory Chain with Grounding Support in Conditions of Acoustic Vacuum”, Nelin. Dinam., 11:3 (2015), 487–502 (Russian)  mathnet  crossref  zmath
    [10] Manevitch, L. I. and Koroleva, I. P., “Limiting Phase Trajectories As an Alternative to Nonlinear Normal Modes”, Proc. IUTAM, 19 (2016), 144–151  crossref
    [11] Smirnov, V. V. and Manevitch, L. I., “Forced Oscillations of the String under Conditions of Sonic Vacuum”, Philos. Trans. Royal Soc. A, 2018 (to appear)  mathscinet
    [12] Manevitch, L. I. and Vakakis, A. F., “Nonlinear Oscillatory Acoustic Vacuum”, SIAM J. Appl. Math., 74:6 (2014), 1742–1762  crossref  mathscinet  zmath
    [13] Koroleva (Kikot), I. P., Manevitch, L. I., and Vakakis, A. F., “Non-Stationary Resonance Dynamics of a Nonlinear Sonic Vacuum with Grounding Supports”, J. Sound Vibration, 357 (2015), 349–364  crossref  mathscinet  adsnasa



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License