Analytical Properties and Solutions of the FitzHugh – Rinzel Model
2019, Vol. 15, no. 1, pp. 3-12
Author(s): Zemlyanukhin A. I., Bochkarev A. V.
Download File PDF, 292.49 Kb |
References |
|
[1] |
Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), ![]() |
[2] |
FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), ![]() |
[3] |
Nagumo, J., Arimoto, S., and Yoshizawa, S., “An Active Pulse Transmission Line Simulating Nerve Axon”, Proc. of the IRE, 50:10 (1962), ![]() |
[4] |
FitzHugh, R., “A Kinetic Model for the Conductance Changes in Nerve Membranes”, J. Cell. Comp. Physiol., 66:suppl. 2 (1965), ![]() |
[5] |
Mornev, O. A., Tsyganov, I. M., Aslanidi, O. V., and Tsyganov, M. A., “Beyond the Kuramoto – Zel'dovich Theory: Steadily Rotating Concave Spiral Waves and Their Relation to the Echo Phenomenon”, JETP Lett., 77:6 (2003), ![]() ![]() ![]() ![]() |
[6] |
Llibre, J. and Vidal, C., “Periodic Solutions of a Periodic FitzHugh – Nagumo System”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:13 (2015), 1550180, 6 pp. ![]() ![]() ![]() |
[7] |
Tsuji, Sh., Ueta, T., Kawakami, H., and Aihara, K., “A Design Method of Bursting Using Two-Parameter Bifurcation Diagrams in FitzHugh – Nagumo Model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:7 (2004), ![]() ![]() ![]() |
[8] |
Gelens, L., Anderson, G. A., and Ferrell, J. E., Jr., “Spatial Trigger Waves: Positive Feedback Gets You a Long Way”, Mol. Biol. Cell, 25:22 (2014), ![]() |
[9] |
Cheng, X., and Ferrell, J. E., Jr., “Apoptosis Propagates through the Cytoplasm As Trigger Waves”, Science, 361:6402 (2018), ![]() ![]() |
[10] |
Kudryashov, N. A., “Asymptotic and Exact Solutions of the FitzHugh – Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), ![]() ![]() ![]() ![]() ![]() |
[11] |
Kudryashov, N. A., Rybka, R. B., and Sboev, A. G., “Analytical Properties of the Perturbed FitzHugh – Nagumo Model”, Appl. Math. Lett., 76 (2018), ![]() ![]() ![]() ![]() |
[12] |
Rinzel, J., “A Formal Classification of Bursting Mechanisms in Excitable Systems”, Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomath., 71, eds. E. Teramoto, M. Yamaguti, Springer, Berlin, 1987, ![]() ![]() |
[13] |
Belykh, V. N. and Pankratova, E. V., “Chaotic Synchronization in Ensembles of Coupled Neurons Modeled by the FitzHugh – Rinzel System”, Radiophys. Quantum El., 49:11 (2006), ![]() ![]() |
[14] |
Wojcik, J. and Shilnikov, A., Voltage Interval Mappings for an Elliptic Bursting Model, 2013, arXiv: 1310.5232 [nlin.CD] ![]() |
[15] |
Conte, R., “Singularities of Differential Equations and Integrability”, Introduction to Methods of Complex Analysis and Geometry for Classical Mechanics and Nonlinear Waves (Chamonix, 1993), eds. D. Benest, C. Froeschle, Frontières, Gif-sur-Yvette, 1994, ![]() ![]() |
[16] |
Weiss, J., Tabor, M., and Carnevale, G., “The Painlevé Property for Partial Differential Equations”, J. Math. Phys., 24:3 (1983), ![]() ![]() ![]() ![]() |
[17] |
Weiss, J., “The Painlevé Property for Partial Differential Equations: 2. Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative”, J. Math. Phys., 24:6 (1983), ![]() ![]() ![]() ![]() |
[18] |
Kudryashov, N. A., “From Singular Manifold Equations to Integrable Evolution Equations”, J. Phys. A, 27:7 (1994), ![]() ![]() ![]() ![]() |

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License