Impact Factor

    Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation

    2019, Vol. 15, no. 1, pp.  79-85

    Author(s): Salatich A. A., Slavyanov S. Y.

    Different forms of the double confluent Heun equation are studied. A generalized Riemann scheme for these forms is given. An equivalent first-order system is introduced. This system can be regarded from the viewpoint of the monodromy property. A corresponding Painlevé equation is derived by means of the antiquantization procedure. It turns out to be a particular case of $P^3$. A general expression for any Painlevé equation is predicted. A particular case of the Teukolsky equation in the theory of black holes is examined. This case is related to the boundary between spherical and thyroidal geometries of a black hole. Difficulties for its antiquantization are shown.
    Keywords: Double confluent Heun equation, antiquantization, Painlevé equation $P^3$, Teukolsky equation
    Citation: Salatich A. A., Slavyanov S. Y., Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 1, pp.  79-85

    Download File
    PDF, 397.47 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License