On the Smith Reduction Theorem for Almost Periodic ODEs Satisfying the Squeezing Property
2019, Vol. 15, no. 1, pp. 97-108
Author(s): Anikushin M. M.
Download File PDF, 280.99 Kb |
References |
|
[1] | Anikushin, M. M., “On the Liouville Phenomenon in Estimates of Fractal Dimensions of Forced Quasi-Periodic Oscillations”, Vestnik St. Petersb. Univ. Math., 52:3 (2019) (to appear) |
[2] | Anikushin, M. M., Dimensional Aspects of Almost Periodic Dynamics, https://www.researchgate.net/project/Dimensional-Aspects-of-Almost-Periodic-Dynamics-Analytical-and-Numerical-Approaches, 2019 |
[3] |
Burkin, I. M., “Method of “Transition into Space of Derivatives”: 40 Years of Evolution”, Differ. Equ., 51:13 (2015), ![]() ![]() ![]() ![]() ![]() |
[4] |
Cartwright, M. L., “Almost Periodic Differential Equations and Almost Periodic Flows”, J. Differential Equations, 5 (1969), ![]() ![]() ![]() ![]() |
[5] |
Glendinning, P., Jäger, T. H., and Keller, G., “How Chaotic Are Strange Non-Chaotic Attractors?”, Nonlinearity, 19:9 (2006), ![]() ![]() ![]() ![]() |
[6] |
Feudel, U., Kuznetsov, S., and Pikovsky, A., Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 56, World Sci., Hackensack, N.J., 2006 ![]() |
[7] |
Fink, A. M., Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer, Berlin, 1974, 342 pp. ![]() ![]() ![]() |
[8] | Leonov, G. A., Kuznetsov, N. V., and Reitmann, V., Attractor Dimension Estimates for Dynamical Systems: Theory and Computation, Springer, Cham, 2019 (to appear) |
[9] |
Levitan, B. M. and Zhikov, V. V., Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982 ![]() ![]() |
[10] |
O'Brien, G. C., “The Frequencies of Almost Periodic Solutions of Almost Periodic Differential Equations”, J. Austral. Math. Soc., 17 (1974), ![]() ![]() |
[11] |
Popov, S. and Reitmann, V., “Frequency Domain Conditions for Finite-Dimensional Projectors and Determining Observations for the Set of Amenable Solutions”, Discrete Contin. Dyn. Syst., 34:1 (2014), ![]() ![]() ![]() ![]() |
[12] |
Robinson, J. C., “Inertial Manifolds and the Strong Squeezing Property”, Nonlinear Evolution Equations & Dynamical Systems: NEEDS'94 (Los Alamos, N.M.), World Sci., River Edge, N.J., 1995, ![]() ![]() |
[13] |
Smith, R. A., “Massera's Convergence Theorem for Periodic Nonlinear Differential Equations”, J. Math. Anal. Appl., 120:2 (1986), ![]() ![]() ![]() |
[14] |
Smith, R. A., “Convergence Theorems for Periodic Retarded Functional-Differential Equations”, Proc. London Math. Soc. (3), 60:3 (1990), ![]() ![]() ![]() |
[15] |
Suresh, K., Prasad, A., and Thamilmaran, K., “Birth of Strange Nonchaotic Attractors through Formation and Merging of Bubbles in a Quasiperiodically Forced Chua's Oscillator”, Phys. Lett. A, 377:8 (2013), ![]() ![]() ![]() ![]() |
[16] |
Yakubovich, V. A., Leonov, G. A., and Gelig, A. Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Ser. Stab. Vib. Control Syst. Ser. A, 14, World Sci., River Edge, N.J., 2004 ![]() ![]() |

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License