Generation of Robust Hyperbolic Chaos in CNN
Received 15 April 2019
2019, Vol. 15, no. 2, pp. 109-124
Author(s): Kuznetsov S. P.
It is shown that on the basis of a cellular neural network (CNN) composed, e.g., of six cells, it is possible to design a chaos generator with an attractor being a kind of Smale – Williams solenoid, which provides chaotic dynamics that is rough (structurally stable), as follows from
respective fundamental mathematical theory. In the context of the technical device, it implies insensitivity to small variations of parameters, manufacturing imperfections, interferences, etc. Results of numerical simulations and circuit simulation in the Multisim environment are presented.
The proposed circuit is the first example of an electronic system where the role of the angular coordinate for the Smale – Williams attractor is played by the spatial phase of the sequence of patterns. It contributes to the collection of feasible systems with hyperbolic attractors and thus promotes filling with real content and promises practical application for the hyperbolic theory, which is an important and deep sector of the modern mathematical theory of dynamical systems.
Download File PDF, 2.57 Mb |
References |
|
[1] |
Chua, L. O. and Yang, L., “Cellular Neural Networks: Theory”, IEEE Trans. Circuits Syst., 35:10 (1988), ![]() ![]() ![]() |
[2] |
Chua, L. O. and Roska, T., “The CNN Paradigm”, IEEE Trans. Circuits Syst. I, 40:3 (1993), ![]() ![]() |
[3] |
Cimagalli, V., Balsi, M., and Caianiello, E., “Cellular Neural Networks: A Review”, Neural Nets WIRN Vietri'93: Proc. of 6th Italian Workshop (Salerno, 1993), World Sci., ed. E. R. Caianiello, 1993, ![]() |
[4] |
Chua, L. O. and Yang, L., “Cellular Neural Networks: Applications”, IEEE Trans. Circuits Syst., 35:10 (1988), ![]() ![]() |
[5] |
Chua, L. O., Hasler, M., Moschytz, G. S., and Neirynck, J., “Autonomous Cellular Neural Networks: A Unified Paradigm for Pattern Formation and Active Wave Propagation”, IEEE Trans. Circuits Syst. I, 42:10 (1995), ![]() ![]() |
[6] |
Hunt, K. J., Sbarbaro, D., Żbikowski, R., and Gawthrop, P. J., “Neural Networks for Control Systems: A Survey”, Automatica, 28:6 (1992), ![]() ![]() ![]() |
[7] | Chua, L. O. and Roska, T., Cellular Neural Networks and Visual Computing: Foundations and Applications, Cambridge Univ. Press, Cambridge, 2002, 410 pp. |
[8] |
Shi, B. and Luo, T., “Spatial Pattern Formation via Reaction-Diffusion Dynamics in ![]() |
[9] |
Gollas, F. and Tetzlaff, R., “Modeling Complex Systems by Reaction-Diffusion Cellular Nonlinear Networks with Polynomial Weight-Functions”, 9th Internat. Workshop on Cellular Neural Networks and Their Applications (Taiwan, 2005), |
[10] |
Pivka, L., “Autowaves and Spatio-Temporal Chaos in CNNs: 1. A Tutorial”, IEEE Trans. Circuits Syst. I, 42:10 (1995), ![]() |
[11] | Chaotic Electronics in Telecommunications, eds. M. Kennedy, G. Setti, R. Rovatti, CRC, Boca Raton, Fla., 2000, 464 pp. |
[12] |
Cuomo, K. M. and Oppenheim, A. V., “Circuit Implementation of Synchronized Chaos with Applications to Communications”, Phys. Rev. Lett., 71:1 (1993), ![]() ![]() |
[13] |
Dmitriev, A. S., Panas, A. I., and Starkov, S. O., “Experiments on Speech and Music Signals Transmission Using Chaos”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5:4 (1995), ![]() ![]() |
[14] |
Bollt, E. M., “Review of Chaos Communication by Feedback Control of Symbolic Dynamics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2 (2003), ![]() ![]() ![]() |
[15] |
Baptista, M. S., “Cryptography with Chaos”, Phys. Lett. A, 240:1–2 (1998), ![]() ![]() ![]() ![]() |
[16] |
Kocarev, L., “Chaos-Based Cryptography: A Brief Overview”, IEEE Circuits Syst. Mag., 1:3 (2001), ![]() |
[17] |
Dachselt, F. and Schwarz, W., “Chaos and Cryptography”, IEEE Trans. Circuits Syst. I, 48:12 (2001), ![]() ![]() ![]() |
[18] |
Stojanovski, T. and Kocarev, L., “Chaos-Based Random Number Generators: Part 1. Analysis [Cryptography]”, IEEE Trans. Circuits Syst. I, 48:3 (2001), ![]() ![]() ![]() |
[19] |
Stojanovski, T., Pihl, J., and Kocarev, L., “Chaos-Based Random Number Generators: Part 2. Practical Realization”, IEEE Trans. Circuits Syst. I, 48:3 (2001), ![]() ![]() ![]() |
[20] |
Bakiri, M., Guyeux, C., Couchot, J. F., and Oudjida, A. K., “Survey on Hardware Implementation of Random Number Generators on FPGA: Theory and Experimental Analyses”, Comput. Sci. Rev., 27 (2018), ![]() ![]() ![]() |
[21] |
Verschaffelt, G., Khoder, M., and Van der Sande, G., “Random Number Generator Based on an Integrated Laser with On-Chip Optical Feedback”, Chaos, 27:11 (2017), 114310, 7 pp. ![]() ![]() |
[22] |
Harman, S. A., Fenwick, A. J., and Williams, C., “Chaotic Signals in Radar?”, Proc. of the 3rd European Radar Conference IEEE (Manchester, September 2006), |
[23] |
Liu, Z., Zhu, X., Hu, W., and Jiang, F., “Principles of Chaotic Signal Radar”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17:5 (2007), ![]() ![]() |
[24] |
Willsey, M. S., Cuomo, K. M., and Oppenheim, A. V., “Selecting the Lorenz Parameters for Wideband Radar Waveform Generation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21:9 (2011), ![]() ![]() |
[25] |
Banerjee, S., Yorke, J. A., and Grebogi, C., “Robust Chaos”, Phys. Rev. Lett., 80:14 (1998), ![]() ![]() ![]() ![]() |
[26] |
Potapov, A. and Ali, M. K., “Robust Chaos in Neural Networks”, Phys. Lett. A, 277:6 (2000), ![]() ![]() ![]() ![]() |
[27] |
Elhadj, Z. and Sprott, J. C., “On the Robustness of Chaos in Dynamical Systems: Theories and Applications”, Front. Phys. China, 3:2 (2008), ![]() ![]() ![]() |
[28] |
Elhadj, Z. and Sprott, J. C., Robust Chaos and Its Applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 79, World Sci., Hackensack, N.J., 2011, 472 pp. ![]() |
[29] |
Gusso, A., Dantas, W. G., and Ujevic, S., “Prediction of Robust Chaos in Micro and Nanoresonators under Two-Frequency Excitation”, Chaos, 29:3 (2019), 033112 ![]() ![]() ![]() |
[30] |
Shilnikov, L., “Mathematical Problems of Nonlinear Dynamics: A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), ![]() ![]() ![]() |
[31] |
Botella-Soler, V., Castelo, J. M., Oteo, J. A., and Ros, J., “Bifurcations in the Lozi Map”, J. Phys. A, 44:30 (2011), 305101, 14 pp. ![]() ![]() ![]() ![]() |
[32] |
Elhadj, Z., Lozi Mappings: Theory and Applications, CRC, Boca Raton, Fla., 2013, 338 pp. ![]() |
[33] |
Belykh, V. N. and Belykh, I., “Belykh Map”, Scholarpedia, 6:10 (2011), ![]() ![]() |
[34] |
Kuznetsov, S. P., “Belykh Attractor in Zaslavsky Map and Its Transformation under Smoothing”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 26:1 (2018), ![]() |
[35] |
Anosov, D. V., “Dynamical Systems in the 1960s: The Hyperbolic Revolution”, Mathematical Events of the Twentieth Century, eds. A. A. Bolibruch, Yu. S. Osipov, Ya. G. Sinai, Springer, Berlin, 2006, ![]() ![]() |
[36] |
Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), ![]() ![]() ![]() |
[37] | Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, 236 pp. |
[38] |
Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. ![]() ![]() |
[39] |
Pugh, C. and Peixoto, M. M., “Structural Stability”, Scholarpedia, 3:9 (2008), ![]() ![]() |
[40] |
Kuznetsov, S. P., “Example of a Physical System with a Hyperbolic Attractor of the Smale – Williams Type”, Phys. Rev. Lett., 95:14 (2005), 144101, 4 pp. ![]() ![]() ![]() |
[41] |
Kuznetsov, S. P. and Pikovsky, A., “Autonomous Coupled Oscillators with Hyperbolic Strange Attractors”, Phys. D, 232:2 (2007), ![]() ![]() ![]() ![]() |
[42] |
Wilczak, D., “Uniformly Hyperbolic Attractor of the Smale – Williams Type for a Poincaré Map in the Kuznetsov System: With Online Multimedia Enhancements”, SIAM J. Appl. Dyn. Syst., 9:4 (2010), ![]() ![]() ![]() ![]() |
[43] |
Kuznetsov, S. P., “Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics”, Phys. Uspekhi, 54:2 (2011), ![]() ![]() ![]() ![]() ![]() |
[44] |
Kuznetsov, S. P., Hyperbolic Chaos: A Physicist's View, Springer, Berlin, 2012, 336 pp. ![]() ![]() |
[45] |
Kuznetsov, S. P. and Seleznev, E. P., “Strange Attractor of Smale – Williams Type in the Chaotic Dynamics of a Physical System”, J. Exp. Theor. Phys., 102:2 (2006), ![]() ![]() ![]() ![]() |
[46] |
Kuznetsov, S. P. and Ponomarenko, V. I., “Realization of a Strange Attractor of the Smale – Williams Type in a Radiotechnical Delay-Feedback Oscillator”, Tech. Phys. Lett., 34:9 (2008), ![]() ![]() ![]() |
[47] |
Kuznetsov, S. P., Ponomarenko, V. I., and Seleznev, E. P., “Autonomous System Generating Hyperbolic Chaos: Circuit Simulation and Experiment”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 21:5 (2013), |
[48] |
Isaeva, O. B., Kuznetsov, S. P., Sataev, I. R., Savin, D. V., and Seleznev, E. P., “Hyperbolic Chaos and Other Phenomena of Complex Dynamics Depending on Parameters in a Nonautonomous System of Two Alternately Activated Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:12 (2015), 1530033, 15 pp. ![]() ![]() ![]() |
[49] |
Kuptsov, P. V., Kuznetsov, S. P., and Pikovsky, A., “Hyperbolic Chaos of Turing Patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. ![]() ![]() ![]() |
[50] |
Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. ![]() ![]() ![]() |
[51] |
Kruglov, V. P., Kuznetsov, S. P., and Pikovsky, A., “Attractor of Smale – Williams Type in an Autonomous Distributed System”, Regul. Chaotic Dyn., 19:4 (2014), ![]() ![]() ![]() ![]() ![]() ![]() |
[52] |
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), ![]() ![]() ![]() ![]() |
[53] |
Shimada, I. and Nagashima, T., “A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems”, Progr. Theoret. Phys., 61:6 (1979), ![]() ![]() ![]() ![]() |
[54] |
Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp. ![]() ![]() |
[55] |
Kaplan, J. L. and Yorke, J. A., “Chaotic Behavior of Multidimensional Difference Equations”, Functional Differential Equations and Approximation of Fixed Points, Lecture Notes in Math., 730, eds. H.-O. Peitgen, H.-O. Walther, Springer, Berlin, 1979, ![]() ![]() |
[56] |
Farmer, J. D., Ott, E., and Yorke, J. A., “The Dimension of Chaotic Attractors”, Phys. D, 7:1–3 (1983), ![]() ![]() ![]() |

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License