Generation of Robust Hyperbolic Chaos in CNN
2019, Vol. 15, no. 2, pp. 109-124
Author(s): Kuznetsov S. P.
Download File PDF, 2.57 Mb |
References |
|
[1] |
Chua, L. O. and Yang, L., “Cellular Neural Networks: Theory”, IEEE Trans. Circuits Syst., 35:10 (1988), ![]() ![]() ![]() |
[2] |
Chua, L. O. and Roska, T., “The CNN Paradigm”, IEEE Trans. Circuits Syst. I, 40:3 (1993), ![]() ![]() |
[3] |
Cimagalli, V., Balsi, M., and Caianiello, E., “Cellular Neural Networks: A Review”, Neural Nets WIRN Vietri'93: Proc. of 6th Italian Workshop (Salerno, 1993), World Sci., ed. E. R. Caianiello, 1993, ![]() |
[4] |
Chua, L. O. and Yang, L., “Cellular Neural Networks: Applications”, IEEE Trans. Circuits Syst., 35:10 (1988), ![]() ![]() |
[5] |
Chua, L. O., Hasler, M., Moschytz, G. S., and Neirynck, J., “Autonomous Cellular Neural Networks: A Unified Paradigm for Pattern Formation and Active Wave Propagation”, IEEE Trans. Circuits Syst. I, 42:10 (1995), ![]() ![]() |
[6] |
Hunt, K. J., Sbarbaro, D., Żbikowski, R., and Gawthrop, P. J., “Neural Networks for Control Systems: A Survey”, Automatica, 28:6 (1992), ![]() ![]() ![]() |
[7] | Chua, L. O. and Roska, T., Cellular Neural Networks and Visual Computing: Foundations and Applications, Cambridge Univ. Press, Cambridge, 2002, 410 pp. |
[8] |
Shi, B. and Luo, T., “Spatial Pattern Formation via Reaction-Diffusion Dynamics in ![]() |
[9] |
Gollas, F. and Tetzlaff, R., “Modeling Complex Systems by Reaction-Diffusion Cellular Nonlinear Networks with Polynomial Weight-Functions”, 9th Internat. Workshop on Cellular Neural Networks and Their Applications (Taiwan, 2005), |
[10] |
Pivka, L., “Autowaves and Spatio-Temporal Chaos in CNNs: 1. A Tutorial”, IEEE Trans. Circuits Syst. I, 42:10 (1995), ![]() |
[11] | Chaotic Electronics in Telecommunications, eds. M. Kennedy, G. Setti, R. Rovatti, CRC, Boca Raton, Fla., 2000, 464 pp. |
[12] |
Cuomo, K. M. and Oppenheim, A. V., “Circuit Implementation of Synchronized Chaos with Applications to Communications”, Phys. Rev. Lett., 71:1 (1993), ![]() ![]() |
[13] |
Dmitriev, A. S., Panas, A. I., and Starkov, S. O., “Experiments on Speech and Music Signals Transmission Using Chaos”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5:4 (1995), ![]() ![]() |
[14] |
Bollt, E. M., “Review of Chaos Communication by Feedback Control of Symbolic Dynamics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2 (2003), ![]() ![]() ![]() |
[15] |
Baptista, M. S., “Cryptography with Chaos”, Phys. Lett. A, 240:1–2 (1998), ![]() ![]() ![]() ![]() |
[16] |
Kocarev, L., “Chaos-Based Cryptography: A Brief Overview”, IEEE Circuits Syst. Mag., 1:3 (2001), ![]() |
[17] |
Dachselt, F. and Schwarz, W., “Chaos and Cryptography”, IEEE Trans. Circuits Syst. I, 48:12 (2001), ![]() ![]() ![]() |
[18] |
Stojanovski, T. and Kocarev, L., “Chaos-Based Random Number Generators: Part 1. Analysis [Cryptography]”, IEEE Trans. Circuits Syst. I, 48:3 (2001), ![]() ![]() ![]() |
[19] |
Stojanovski, T., Pihl, J., and Kocarev, L., “Chaos-Based Random Number Generators: Part 2. Practical Realization”, IEEE Trans. Circuits Syst. I, 48:3 (2001), ![]() ![]() ![]() |
[20] |
Bakiri, M., Guyeux, C., Couchot, J. F., and Oudjida, A. K., “Survey on Hardware Implementation of Random Number Generators on FPGA: Theory and Experimental Analyses”, Comput. Sci. Rev., 27 (2018), ![]() ![]() ![]() |
[21] |
Verschaffelt, G., Khoder, M., and Van der Sande, G., “Random Number Generator Based on an Integrated Laser with On-Chip Optical Feedback”, Chaos, 27:11 (2017), 114310, 7 pp. ![]() ![]() |
[22] |
Harman, S. A., Fenwick, A. J., and Williams, C., “Chaotic Signals in Radar?”, Proc. of the 3rd European Radar Conference IEEE (Manchester, September 2006), |
[23] |
Liu, Z., Zhu, X., Hu, W., and Jiang, F., “Principles of Chaotic Signal Radar”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17:5 (2007), ![]() ![]() |
[24] |
Willsey, M. S., Cuomo, K. M., and Oppenheim, A. V., “Selecting the Lorenz Parameters for Wideband Radar Waveform Generation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21:9 (2011), ![]() ![]() |
[25] |
Banerjee, S., Yorke, J. A., and Grebogi, C., “Robust Chaos”, Phys. Rev. Lett., 80:14 (1998), ![]() ![]() ![]() ![]() |
[26] |
Potapov, A. and Ali, M. K., “Robust Chaos in Neural Networks”, Phys. Lett. A, 277:6 (2000), ![]() ![]() ![]() ![]() |
[27] |
Elhadj, Z. and Sprott, J. C., “On the Robustness of Chaos in Dynamical Systems: Theories and Applications”, Front. Phys. China, 3:2 (2008), ![]() ![]() ![]() |
[28] |
Elhadj, Z. and Sprott, J. C., Robust Chaos and Its Applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 79, World Sci., Hackensack, N.J., 2011, 472 pp. ![]() |
[29] |
Gusso, A., Dantas, W. G., and Ujevic, S., “Prediction of Robust Chaos in Micro and Nanoresonators under Two-Frequency Excitation”, Chaos, 29:3 (2019), 033112 ![]() ![]() ![]() |
[30] |
Shilnikov, L., “Mathematical Problems of Nonlinear Dynamics: A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), ![]() ![]() ![]() |
[31] |
Botella-Soler, V., Castelo, J. M., Oteo, J. A., and Ros, J., “Bifurcations in the Lozi Map”, J. Phys. A, 44:30 (2011), 305101, 14 pp. ![]() ![]() ![]() ![]() |
[32] |
Elhadj, Z., Lozi Mappings: Theory and Applications, CRC, Boca Raton, Fla., 2013, 338 pp. ![]() |
[33] |
Belykh, V. N. and Belykh, I., “Belykh Map”, Scholarpedia, 6:10 (2011), ![]() ![]() |
[34] |
Kuznetsov, S. P., “Belykh Attractor in Zaslavsky Map and Its Transformation under Smoothing”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 26:1 (2018), ![]() |
[35] |
Anosov, D. V., “Dynamical Systems in the 1960s: The Hyperbolic Revolution”, Mathematical Events of the Twentieth Century, eds. A. A. Bolibruch, Yu. S. Osipov, Ya. G. Sinai, Springer, Berlin, 2006, ![]() ![]() |
[36] |
Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), ![]() ![]() ![]() |
[37] | Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, 236 pp. |
[38] |
Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. ![]() ![]() |
[39] |
Pugh, C. and Peixoto, M. M., “Structural Stability”, Scholarpedia, 3:9 (2008), ![]() ![]() |
[40] |
Kuznetsov, S. P., “Example of a Physical System with a Hyperbolic Attractor of the Smale – Williams Type”, Phys. Rev. Lett., 95:14 (2005), 144101, 4 pp. ![]() ![]() ![]() |
[41] |
Kuznetsov, S. P. and Pikovsky, A., “Autonomous Coupled Oscillators with Hyperbolic Strange Attractors”, Phys. D, 232:2 (2007), ![]() ![]() ![]() ![]() |
[42] |
Wilczak, D., “Uniformly Hyperbolic Attractor of the Smale – Williams Type for a Poincaré Map in the Kuznetsov System: With Online Multimedia Enhancements”, SIAM J. Appl. Dyn. Syst., 9:4 (2010), ![]() ![]() ![]() ![]() |
[43] |
Kuznetsov, S. P., “Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics”, Phys. Uspekhi, 54:2 (2011), ![]() ![]() ![]() ![]() ![]() |
[44] |
Kuznetsov, S. P., Hyperbolic Chaos: A Physicist's View, Springer, Berlin, 2012, 336 pp. ![]() ![]() |
[45] |
Kuznetsov, S. P. and Seleznev, E. P., “Strange Attractor of Smale – Williams Type in the Chaotic Dynamics of a Physical System”, J. Exp. Theor. Phys., 102:2 (2006), ![]() ![]() ![]() ![]() |
[46] |
Kuznetsov, S. P. and Ponomarenko, V. I., “Realization of a Strange Attractor of the Smale – Williams Type in a Radiotechnical Delay-Feedback Oscillator”, Tech. Phys. Lett., 34:9 (2008), ![]() ![]() ![]() |
[47] |
Kuznetsov, S. P., Ponomarenko, V. I., and Seleznev, E. P., “Autonomous System Generating Hyperbolic Chaos: Circuit Simulation and Experiment”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 21:5 (2013), |
[48] |
Isaeva, O. B., Kuznetsov, S. P., Sataev, I. R., Savin, D. V., and Seleznev, E. P., “Hyperbolic Chaos and Other Phenomena of Complex Dynamics Depending on Parameters in a Nonautonomous System of Two Alternately Activated Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:12 (2015), 1530033, 15 pp. ![]() ![]() ![]() |
[49] |
Kuptsov, P. V., Kuznetsov, S. P., and Pikovsky, A., “Hyperbolic Chaos of Turing Patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. ![]() ![]() ![]() |
[50] |
Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. ![]() ![]() ![]() |
[51] |
Kruglov, V. P., Kuznetsov, S. P., and Pikovsky, A., “Attractor of Smale – Williams Type in an Autonomous Distributed System”, Regul. Chaotic Dyn., 19:4 (2014), ![]() ![]() ![]() ![]() ![]() ![]() |
[52] |
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), ![]() ![]() ![]() ![]() |
[53] |
Shimada, I. and Nagashima, T., “A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems”, Progr. Theoret. Phys., 61:6 (1979), ![]() ![]() ![]() ![]() |
[54] |
Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp. ![]() ![]() |
[55] |
Kaplan, J. L. and Yorke, J. A., “Chaotic Behavior of Multidimensional Difference Equations”, Functional Differential Equations and Approximation of Fixed Points, Lecture Notes in Math., 730, eds. H.-O. Peitgen, H.-O. Walther, Springer, Berlin, 1979, ![]() ![]() |
[56] |
Farmer, J. D., Ott, E., and Yorke, J. A., “The Dimension of Chaotic Attractors”, Phys. D, 7:1–3 (1983), ![]() ![]() ![]() |

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License