A Spherical Particle Settling Towards a Corrugated Wall

    2019, Vol. 15, no. 2, pp.  125-134

    Author(s): Lamzoud K., Assoudi R., Bouisfi F., Chaoui M.

    Based on the assumption of low Reynolds number, the flow around a spherical particle settling towards a corrugated wall in a fluid at rest is described by Stokes equations. In the case of the small amplitude of wall roughness, the asymptotic expansion coupled with the Lorentz reciprocal theorem are used to derive analytical expressions of the hydrodynamic effects due to wall roughness. The evolution of these effects in terms of roughness parameters and also the sphere-wall distance are discussed.
    Keywords: Stokes equations, low Reynolds number, roughness effects, asymptotic expansion, Lorentz reciprocal theorem
    Citation: Lamzoud K., Assoudi R., Bouisfi F., Chaoui M., A Spherical Particle Settling Towards a Corrugated Wall, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 2, pp.  125-134

    Download File
    PDF, 521.29 Kb


    [1] Williams, Ph. S., Koch, Th., and Giddings, J. C., “Characterization of Near-Wall Hydrodynamic Lift Forces Using Sedimentation Field-Flow Fractionation”, Chem. Eng. Commun., 111:1 (1992), 121–147  crossref  mathscinet
    [2] Pasol, L., Martin, M., Ekiel-Jeżewska, M. L., Wajnryb, E., Bławzdziewicz, J., and Feuillebois, F., “Motion of Sphere Parallel to Plane Walls in a Poiseuille Flow. Application to Field-Flow Fractionation and Hydrodynamic Chromatography”, Chem. Eng. Sci., 66:18 (2011), 4078–4089  crossref
    [3] Beebe, D. J., Mensing, G. A., and Walker, G. M., “Physics and Applications of Microfluidics in Biology”, Annu. Rev. Biomed. Eng., 4:1 (2002), 261–286  crossref  mathscinet
    [4] Priezjev, N. V., Darhuber, A. A., and Troian, S. M., “Slip Behavior in Liquid Films on Surfaces of Patterned Wettability: Comparison between Continuum and Molecular Dynamics Simulations”, Phys. Rev. E, 71:4 (2005), 041608, 11 pp.  crossref  adsnasa  elib
    [5] Feuillebois, F., “Some Theoretical Results for the Motion of Solid Spherical Particles in a Viscous Fluid”, Multiphase Sci. Technol., 4:1–4 (1989), 583–789  crossref
    [6] O'Neill, M. E., “A Slow Motion of Viscous Liquid Caused by a Slowly Moving Solid Sphere: An Addendum”, Mathematika, 14:2 (1967), 170–172  crossref  mathscinet  zmath
    [7] O'Neill, M. E., “A Slow Motion of Viscous Liquid Caused by a Slowly Moving Solid Sphere”, Mathematika, 11:1 (1964), 67–74  crossref  mathscinet  zmath
    [8] Goldman, A. J., Cox, R. G., and Brenner, H., “Slow Viscous Motion of a Sphere Parallel to a Plane Wall: 1. Motion through a Quiescent Fluid”, Chem. Eng. Sci., 22:4 (1967), 637–651  crossref
    [9] Chaoui, M. and Feuillebois, F., “Creeping Flow around a Sphere in a Shear Flow Close to a Wall”, Q. J. Mech. Appl. Math., 56:3 (2003), 381–410  crossref  mathscinet  zmath
    [10] Navier, C. L. M. H., “Mémoire sur les lois du movement des fluids”, Mém. Acad. Sci., 6 (1827), 389–440
    [11] Maxwell, J. C., “On Stresses in Rarified Gases Arising Inequalities of Temperature”, Philos. Trans. Royal Soc., 170 (1879), 231–256  crossref  adsnasa
    [12] David, A. M. J., Kezirian, M. T., and Brenner, H., “On the Stokes – Einstein Model of Surface Diffusion along Solid Surfaces: Slip Boundary Conditions”, J. Colloid Interface Sci., 165:1 (1994), 129–140  crossref  mathscinet  adsnasa
    [13] Elasmi, L., “Singularity Method for Stokes with Slip Boundary Condition”, J. Appl. Math., 73:5 (2008), 724–739  mathscinet  zmath
    [14] Ghalya, N., Hydrodynamic Interactions between a Solid Particle and a Smooth Wall with Slip Condition of Navier, PhD Thesis, École Polytechnique, Palaiseau, 2012
    [15] Assoudi, R., Lamzoud, K., and Chaoui, M., “Influence of the Wall Roughness on a Linear Shear Flow”, FME Trans., 46:2 (2019), 272–277
    [16] Falade, A. and Brenner, H., “First-Order Wall Curvature Effects upon the Stokes Resistance of a Spherical Particle Moving in Close Proximity to a Solid Wall”, J. Fluid Mech., 193 (1988), 533–568  crossref  mathscinet  zmath  adsnasa
    [17] Smart, J. R. and Leighton, D. T., Jr., “Measurement of the Hydrodynamic Surface Roughness of Noncolloidal Spheres”, Phys. Fluid, 1:1 (1989), 52–60  crossref  adsnasa
    [18] Smart, J. R., Beimfohr, S., and Leighton, D. T., Jr., “Measurement of the Translational and Rotational Velocities of a Noncolloidal Sphere Rolling Down a Smooth Inclined Plane at Low Reynolds Number”, Phys. Fluid, 5:1 (1993), 13–24  crossref  adsnasa
    [19] Lecoq, N., Anthore, R., Cichocki, B., Szymczak, P., and Feuillebois, F., “Drag Force on a Sphere Moving Towards a Corrugated Wall”, J. Fluid Mech., 513 (2004), 247–264  crossref  zmath  adsnasa
    [20] Lecoq, N., “Boundary Conditions for Creeping Flow along Periodic or Random Rough Surfaces, Experimental and Theoretical Results”, J. Phys. Conf. Ser., 392:1 (2012), 012010, 19 pp.  crossref  elib
    [21] Assoudi, R., Chaoui, M., Feuillebois, F., and Allouche, H., “Motion of a Spherical Particle along a Rough Wall in a Shear Flow”, Z. Angew. Math. Phys., 69:5 (2018), Art. 112, 30 pp.  crossref  mathscinet
    [22] Pasol, L., Chaoui, M., Yahiaoui, S., and Feuillebois, F., “Analytical Solution for a Spherical Particle near a Wall in Axisymmetrical Polynomial Creeping Flows”, Phys. Fluids, 17:7 (2005), 073602, 13 pp.  crossref  mathscinet  zmath  adsnasa
    [23] Bernner, H., “The Slow Motion of a Sphere through a Viscous Fluid towards a Plane Surface”, Chem. Eng. Sci., 16:3–4 (1961), 242–251  crossref

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License