Advective Flow of a Rotating Fluid Layer in a Vibrational Field

    Received 09 July 2019; accepted 19 August 2019

    2019, Vol. 15, no. 3, pp.  261-270

    Author(s): Shvarts K. G.

    This paper presents a derivation of new exact solutions to the Navier – Stokes equations in Boussinesq approximation describing two advective flows in a rotating thin horizontal fluid layer with no-slip or free boundaries in a vibrational field. The layer rotates at a constant angular velocity; the axis of rotation is aligned with the vertical axis of coordinates. The temperature is linear along the boundaries of the layer. The case of longitudinal vibration is considered. The resulting solutions are similar to those describing the advective flows in a rotating fluid layer with solid or free boundaries without vibration. In both cases, the velocity profile is antisymmetric. Thus, in particular, in the absence of rotation, the longitudinal vibration in the presence of advection can be considered as a kind of “one-dimensional” rotation. The presence of rotation initiates the vortex motion of the fluid in the layer. Longitudinal vibration has a stronger effect on the xth component of the velocity than on the yth component. At large values of the Taylor number and (or) the vibration analogue of the Rayleigh number thin boundary layers of velocity, temperature and amplitude of the pulsating velocity component arise, the thickness of which is proportional to the root of the fourth degree from the sum of these numbers.
    Keywords: horizontal convection, longitudinal vibration, exact solution
    Citation: Shvarts K. G., Advective Flow of a Rotating Fluid Layer in a Vibrational Field, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  261-270

    Download File
    PDF, 316.33 Kb


    [1] Andreev, V. K., The Birikh Solution of the Convection Equations and Some Its Generalizations, Preprint No. 1-10, Inst. Comput. Math. SB RAS, Krasnoyarsk, 2010, 66 pp. (Russian)  zmath
    [2] Anisimov, I. A. and Birikh, R. V., “Hydrodynamic Instability of Vibration Advective Flow in Microgravity”, Vibrational Effects in Hydrodynamics, v. 1, ed. D. V. Lyubimov, Perm. Gos. Univ., Perm, 1998, 17–24 (Russian)
    [3] Aristov, S. N. and Prosviryakov, E. Yu., “A New Class of Exact Solutions for Three-Dimensional Thermal Diffusion Equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293  crossref  elib; Teoret. Osnovy Khim. Tekhnolog., 50:3 (2016), 294–301 (Russian)
    [4] Aristov, S. N. and Schwarz, K. G., Vortex Flows of Advective Nature in a Rotating Fluid Layer, Perm. Gos. Univ., Perm, 2006, 154 pp. (Russian)
    [5] Aristov, S. N. and Shvartz, K. G., “Stability of the Advective Flow in a Rotating Horizontal Fluid Layer”, Fluid Dynam., 34:4 (1999), 457–464  mathscinet  zmath; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 34:4 (1999), 3–11 (Russian)  zmath
    [6] Bardin, B. S. and Panev, A. S., “On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane”, Russian J. Nonlinear Dyn., 14:4 (2018), 519–542  mathscinet  zmath
    [7] Birikh, R. V. and Katanova, T. N., “Effect of High-Frequency Vibrations on the Stability of Advective Flow”, Fluid Dynam., 33:1 (1998), 12–17  crossref  mathscinet  zmath  adsnasa; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 1998, no. 1, 16–22 (Russian)  zmath
    [8] Birikh, R. V. and Katanova, T. N., “On Stabilization of Advective Flow by Transverse Vibrations”, Vibrational Effects in Hydrodynamics, v. 1, ed. D. V. Lyubimov, Perm. Gos. Univ., Perm, 1998, 25–37 (Russian)
    [9] Birikh, R. V., “Vibrational Convection in a Plane Layer with a Longitudinal Temperature Gradient”, Fluid Dynam., 25:4 (1990), 500–503  crossref  adsnasa; Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1990, no. 4, 12–15 (Russian)
    [10] Borisov, A. V. and Mamaev, I. S., “Isomorphisms of Geodesic Flows on Quadrics”, Regul. Chaotic Dyn., 14:4–5 (2009), 455–465  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [11] Gershuni, G.Ż. and Zhukhovitskii, E. M., “Plane-Parallel Advective Flows in Vibrational Field”, J. Eng. Phys., 56:2 (1989), 238–242  crossref; Inzh.-Fiz. Zh., 56:2 (1989), 238–242 (Russian)
    [12] Gershuni, G.Ż. and Zhukhovitskii, E. M., Convective Stability of Incompressible Liquid, Wiley, Jerusalem, 1976, 330 pp.
    [13] Gershuni, G.Ż., Zhukhovitskii, E. M., and Nepomnyashchii, A. A., Stability of Convective Flows, Nauka, Moscow, 1989, 320 pp. (Russian)  mathscinet  zmath
    [14] Gershuni, G.Ż. and Lyubimov, D. V., Thermal Vibrational Convection, Wiley, New York, 1998, 372 pp.
    [15] Hudoba, A., Molokov, S., Aleksandrova, S., and Pedcenko, A., “Linear Stability of Buoyant Convection in a Horizontal Layer of an Electrically Conducting Fluid in moderate and High Vertical Magnetic Field”, Phys. Fluids, 28:9 (2016), 094104, 15 pp.  crossref  adsnasa  elib
    [16] Kaddeche, S., Henry, D., and Benhadid, H., “Magnetic Stabilization of the Buoyant Convection between Infinite Horizontal Walls with a Horizontal Temperature Gradient”, J. Fluid Mech., 480 (2003), 185–216  crossref  mathscinet  zmath  adsnasa
    [17] Ostroumov, G. A., Free Convection under the Condition of the Internal Problem, NACA-TM-1407, Rept-4281, NASA, Washington, D.C., 1958, 239 pp.

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License