A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family

    2019, Vol. 15, no. 3, pp.  293-307

    Author(s): Mukherjee I., Guha P.

    The nonholonomic deformations of nonlocal integrable systems belonging to the nonlinear Schrödinger family are studied using the bi-Hamiltonian formalism as well as the Lax pair method. The nonlocal equations are first obtained by symmetry reductions of the variables in the corresponding local systems. The bi-Hamiltonian structures of these equations are explicitly derived. The bi-Hamiltonian structures are used to obtain the nonholonomic deformation following the Kupershmidt ansatz. Further, the same deformation is studied using the Lax pair approach and several properties of the deformation are discussed. The process is carried out for coupled nonlocal nonlinear Schrödinger and derivative nonlinear Schrödinger (Kaup Newell) equations. In the case of the former, an exact equivalence between the deformations obtained through the bi-Hamiltonian and Lax pair formalisms is indicated.
    Keywords: nonlocal integrable systems, nonlinear Schr¨odinger equation, Kaup –Newell equation, bi-Hamiltonian system, Lax method, nonholonomic deformation
    Citation: Mukherjee I., Guha P., A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  293-307

    Download File
    PDF, 257.61 Kb


    [1] Das, A., Integrable Models, World Sci. Lecture Notes Phys., 30, World Sci., Teaneck, N.J., 1989, xiv+342 pp.  crossref  mathscinet  zmath  adsnasa
    [2] Lax, P. D., “Integrals of Nonlinear Equations of Evolution and Solitary Waves”, Comm. Pure Appl. Math., 21 (1968), 467–490  crossref  mathscinet  zmath
    [3] Ablowitz, M. J. and Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991, xii+516 pp.  mathscinet  zmath
    [4] Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., “The Inverse Scattering Transform: Fourier Analysis for Nonlinear Problems”, Stud. Appl. Math., 53:4 (1974), 249–315  crossref  mathscinet  zmath
    [5] Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987, x+592 pp.  mathscinet  zmath
    [6] Magri, F., “A Simple Model of the Integrable Hamiltonian Equation”, J. Math. Phys., 19:5 (1978), 1156–1162  crossref  mathscinet  zmath  adsnasa
    [7] Malomed, B., “Nonlinear Schrödinger Equations”, Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge, New York, 2005, 639–643  mathscinet
    [8] Zhidkov, P. E., Korteweg – de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., 1756, Springer, Berlin, 2001, vi+147 pp.  mathscinet
    [9] Rogers, C. and Schief, W., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Texts Appl. Math., 30, Cambridge Univ. Press, Cambridge, 2002, 432 pp.  mathscinet
    [10] Ablowitz, M. and Musslimani, Z., “Integrable Nonlocal Nonlinear Schrödinger Equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp.  crossref  adsnasa
    [11] Guo, A., Salamo, G. J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G. A., and Christodoulides, D. N., “Observation of PT-Symmetry Breaking in Complex Optical Potentials”, Phys. Rev. Lett., 103:9 (2009), 093902, 4 pp.  crossref  adsnasa
    [12] Regensburger, A., Bersch, C., Miri, M. A., Onishchukov, G., Christodoulides, D. N., and Peschel, U., “Parity-Time Synthetic Photonic Lattices”, Nature, 488:7410 (2012), 167–171  crossref  adsnasa  elib
    [13] Rüter, Ch. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., and Kip, D., “Observation of Parity-Time Symmetry in Optics”, Nature Phys., 6:3 (2010), 192–195  crossref  adsnasa  elib
    [14] Fokas, A. S., Its, A. R., and Sung, L.-Y., “The Nonlinear Schrödinger Equation on the Half-Line”, Nonlinearity, 18:4 (2005), 1771–1822  crossref  mathscinet  zmath  adsnasa  elib
    [15] Fokas, A. S., “Integrable Nonlinear Evolution Equations on the Half-Line”, Comm. Math. Phys., 230:1 (2002), 1–39  crossref  mathscinet  zmath  adsnasa
    [16] Fokas, A. S. and Its, A. R., “The Nonlinear Schrödinger Equation on the Interval”, J. Phys. A, 37:23 (2004), 6091–6114  crossref  mathscinet  zmath  adsnasa
    [17] Fokas, A. S. and Its, A. R., “The Linearization of the Initial-Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27:3 (1996), 738–764  crossref  mathscinet  zmath
    [18] Its, A. R., “Asymptotic Behavior of the Solutions to the Nonlinear Schrödinger Equation, and Isomonodromic Deformations of Systems of Linear Differential Equations”, Soviet Math. Dokl., 24:3 (1981), 452–456  mathscinet  zmath; Dokl. Akad. Nauk SSSR, 261:1 (1981), 14–18 (Russian)  mathnet  mathscinet  zmath
    [19] Ablowitz, M. J., Fokas, A. S., and Musslimani, Z. H., “On a New Nonlocal Formulation of Water Waves”, J. Fluid Mech., 562 (2006), 313–344  crossref  mathscinet  adsnasa  elib
    [20] Fokas, A. S., “Integrable Multidimensional Versions of the Nonlocal Nonlinear Schrödinger Equation”, Nonlinearity, 29:2 (2016), 319–324  crossref  mathscinet  zmath  adsnasa
    [21] Ablowitz, M. J. and Musslimani, Z. H., “Integrable Nonlocal Nonlinear Equations”, Stud. Appl. Math., 139:1 (2017), 7–59  crossref  mathscinet  zmath  elib
    [22] Ablowitz, M. J. and Musslimani, Z. H., “Integrable Discrete PT Symmetric Model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp.  crossref  mathscinet  adsnasa  elib
    [23] Ablowitz, M. J. and Musslimani, Z. H., “Inverse Scattering Transform for the Integrable Nonlocal Nonlinear Schrödinger Equation”, Nonlinearity, 29:3 (2016), 915–946  crossref  mathscinet  zmath  adsnasa
    [24] Ablowitz, M. J., Luo, X.-D., and Musslimani, Z. H., “Inverse Scattering Transform for the Nonlocal Nonlinear Schrödinger Equation with Nonzero Boundary Conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp.  crossref  mathscinet  zmath  adsnasa
    [25] Valchev, T., “On a Nonlocal Nonlinear Schrödinger Equation”, Mathematics in Industry, ed. A. Slavova, Cambridge Scholars Publ., Cambridge, 2014, 36–52
    [26] Gürses, M. and Pekcan, A., “Nonlocal Nonlinear Schrödinger Equations and Their Soliton Solutions”, J. Math. Phys., 59:5 (2018), 051501, 17 pp.  crossref  mathscinet  zmath  adsnasa
    [27] Gerdjikov, V. S. and Saxena, A., “Complete Integrability of Nonlocal Nonlinear Schrödinger Equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp.  crossref  mathscinet  zmath  adsnasa  elib
    [28] Bender, C. M., PT Symmetry in Quantum and Classical Physics, World Sci., Hackensack, N.J., 2019, xxii+446 pp.  mathscinet  zmath
    [29] Bender, C. M., Introduction to PT-Symmetric Quantum Theory, 2005, 23 pp., arXiv: quant-ph/0501052
    [30] Bender, C. M., “PT Symmetric Quantum Theory”, J. Phys. Conf. Ser., 631 (2015), 012002, 12 pp.  crossref  elib
    [31] Karasu-Kalkanli, A., Karasu, A., Sakovich, A., Sakovich, S., and Turhan, R., “A New Integrable Generalization of the Korteweg – de Vries Equation”, J. Math. Phys., 49:7 (2008), 073516, 10 pp.  crossref  mathscinet  zmath  adsnasa  elib
    [32] Kuperschmidt, B. A., “KdV6: An Integrable System”, Phys. Lett. A, 372:15 (2008), 2634–2639  crossref  mathscinet  adsnasa
    [33] Kundu, A., “Exact Accelerating Solitons in Nonholonomic Deformation of the KdV Equation with Two-Fold Integrable Hierarchy”, J. Phys. A, 41:49 (2008), 495201, 7 pp.  crossref  mathscinet  zmath
    [34] Kundu, A., Sahadevan, R., and Nalinidevi, L., “Nonholonomic Deformation of KdV and mKdV Equations and Their Symmetries, Hierarchies and Integrability”, J. Phys. A, 42:11 (2009), 115213, 13 pp.  crossref  mathscinet  zmath  adsnasa  elib
    [35] Kundu, A., “Two-Fold Integrable Hierarchy of Nonholonomic Deformation of the Derivative Nonlinear Schrödinger and the Lenells – Fokas Equation”, J. Math. Phys., 51:2 (2010), 022901, 17 pp.  crossref  mathscinet  zmath  adsnasa  elib
    [36] Guha, P., “Nonholonomic Deformation of Generalized KdV-Type Equations”, J. Phys. A, 42:34 (2009), 345201, 17 pp.  crossref  mathscinet  zmath  elib
    [37] Guha, P., “Nonholonomic Deformation of Coupled and Supersymmetric KdV Equations and Euler – Poincaré – Suslov Method”, Rev. Math. Phys., 27:4 (2015), ID 1550011-25  crossref  mathscinet  zmath  elib
    [38] Abhinav, K., Guha, P., and Mukherjee, I., “Study of Quasi-Integrable and Non-Holonomic Deformation of Equations in the NLS and DNLS Hierarchy”, J. Math. Phys., 59:10 (2018), 101507, 18 pp.  crossref  mathscinet  zmath  adsnasa
    [39] Fokas, A. S. and Pelloni, B., “A Transform Method for Evolution PDEs on the Interval”, IMA J. Appll. Math., 70:4 (2005), 564–587  crossref  mathscinet  zmath
    [40] Fokas, A. S. and Pelloni, B., Unified Transform for Boundary Value Problems: Applications and Advances, SIAM, Philadelphia, Pa., 2014, 305 pp.  mathscinet
    [41] Krupková, O., “Mechanical Systems with Nonholonomic Constraints”, J. Math. Phys., 38:10 (1997), 5098–5126  crossref  mathscinet  zmath  adsnasa
    [42] Ferreira, L. A. and Zakrzewski, W. J., “The Concept of Quasi-Integrability: A Concrete Example”, J. High Energy Phys., 2011, no. 5, 130, 39 pp.  crossref  mathscinet  zmath  elib
    [43] Blas, H. and Zambrano, M., “Quasi-Integrability in the Modified Defocusing Non-Linear Schrödinger Model and Dark Solitons”, J. High Energy Phys., 2016, no. 3, 005, front matter + , 47 pp.  mathscinet  elib
    [44] Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A., “A Self-Dual Yang – Mills Hierarchy and Its Reductions to Integrable Systems in $1+1$ and $2+1$ Dimensions”, Comm. Math. Phys., 158:2 (1993), 289–314  crossref  mathscinet  zmath  adsnasa
    [45] Ablowitz, M. J., Chakravarty, S., and Halburd, R. G., “Integrable Systems and Reductions of the Self-Dual Yang – Mills Equations: Integrability, Topological Solitons and Beyond”, J. Math. Phys., 44:8 (2003), 3147–3173  crossref  mathscinet  zmath  adsnasa
    [46] Ablowitz, M. J. and Musslimani, Z. H., Integrable Nonlocal Asymptotic Reductions of Physically Significant Nonlinear Equations, 2019, 9 pp., arXiv: 1903.06752 [nlin.SI]  mathscinet  zmath
    [47] Mukherjee, I., Guha, P., and Abhinav, K., Studies on Different Aspects of Nonlocal Integrable Systems: Soliton Solutions, Deformations and Reductions from SDYM Equations (to appear)

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License