# A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family

2019, Vol. 15, no. 3, pp.  293-307

Author(s): Mukherjee I., Guha P.

The nonholonomic deformations of nonlocal integrable systems belonging to the nonlinear Schrödinger family are studied using the bi-Hamiltonian formalism as well as the Lax pair method. The nonlocal equations are first obtained by symmetry reductions of the variables in the corresponding local systems. The bi-Hamiltonian structures of these equations are explicitly derived. The bi-Hamiltonian structures are used to obtain the nonholonomic deformation following the Kupershmidt ansatz. Further, the same deformation is studied using the Lax pair approach and several properties of the deformation are discussed. The process is carried out for coupled nonlocal nonlinear Schrödinger and derivative nonlinear Schrödinger (Kaup Newell) equations. In the case of the former, an exact equivalence between the deformations obtained through the bi-Hamiltonian and Lax pair formalisms is indicated.
Keywords: nonlocal integrable systems, nonlinear Schr¨odinger equation, Kaup –Newell equation, bi-Hamiltonian system, Lax method, nonholonomic deformation
Citation: Mukherjee I., Guha P., A Study of Nonholonomic Deformations of Nonlocal Integrable Systems Belonging to the Nonlinear Schrödinger Family, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  293-307
DOI:10.20537/nd190308

## References

[1] Das, A., Integrable Models, World Sci. Lecture Notes Phys., 30, World Sci., Teaneck, N.J., 1989, xiv+342 pp.
[2] Lax, P. D., “Integrals of Nonlinear Equations of Evolution and Solitary Waves”, Comm. Pure Appl. Math., 21 (1968), 467–490
[3] Ablowitz, M. J. and Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991, xii+516 pp.
[4] Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., “The Inverse Scattering Transform: Fourier Analysis for Nonlinear Problems”, Stud. Appl. Math., 53:4 (1974), 249–315
[5] Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987, x+592 pp.
[6] Magri, F., “A Simple Model of the Integrable Hamiltonian Equation”, J. Math. Phys., 19:5 (1978), 1156–1162
[7] Malomed, B., “Nonlinear Schrödinger Equations”, Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge, New York, 2005, 639–643
[8] Zhidkov, P. E., Korteweg – de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., 1756, Springer, Berlin, 2001, vi+147 pp.
[9] Rogers, C. and Schief, W., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Texts Appl. Math., 30, Cambridge Univ. Press, Cambridge, 2002, 432 pp.
[10] Ablowitz, M. and Musslimani, Z., “Integrable Nonlocal Nonlinear Schrödinger Equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp.
[11] Guo, A., Salamo, G. J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G. A., and Christodoulides, D. N., “Observation of PT-Symmetry Breaking in Complex Optical Potentials”, Phys. Rev. Lett., 103:9 (2009), 093902, 4 pp.
[12] Regensburger, A., Bersch, C., Miri, M. A., Onishchukov, G., Christodoulides, D. N., and Peschel, U., “Parity-Time Synthetic Photonic Lattices”, Nature, 488:7410 (2012), 167–171
[13] Rüter, Ch. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., and Kip, D., “Observation of Parity-Time Symmetry in Optics”, Nature Phys., 6:3 (2010), 192–195
[14] Fokas, A. S., Its, A. R., and Sung, L.-Y., “The Nonlinear Schrödinger Equation on the Half-Line”, Nonlinearity, 18:4 (2005), 1771–1822
[15] Fokas, A. S., “Integrable Nonlinear Evolution Equations on the Half-Line”, Comm. Math. Phys., 230:1 (2002), 1–39
[16] Fokas, A. S. and Its, A. R., “The Nonlinear Schrödinger Equation on the Interval”, J. Phys. A, 37:23 (2004), 6091–6114
[17] Fokas, A. S. and Its, A. R., “The Linearization of the Initial-Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27:3 (1996), 738–764
[18] Its, A. R., “Asymptotic Behavior of the Solutions to the Nonlinear Schrödinger Equation, and Isomonodromic Deformations of Systems of Linear Differential Equations”, Soviet Math. Dokl., 24:3 (1981), 452–456    ; Dokl. Akad. Nauk SSSR, 261:1 (1981), 14–18 (Russian)
[19] Ablowitz, M. J., Fokas, A. S., and Musslimani, Z. H., “On a New Nonlocal Formulation of Water Waves”, J. Fluid Mech., 562 (2006), 313–344
[20] Fokas, A. S., “Integrable Multidimensional Versions of the Nonlocal Nonlinear Schrödinger Equation”, Nonlinearity, 29:2 (2016), 319–324
[21] Ablowitz, M. J. and Musslimani, Z. H., “Integrable Nonlocal Nonlinear Equations”, Stud. Appl. Math., 139:1 (2017), 7–59
[22] Ablowitz, M. J. and Musslimani, Z. H., “Integrable Discrete PT Symmetric Model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp.
[23] Ablowitz, M. J. and Musslimani, Z. H., “Inverse Scattering Transform for the Integrable Nonlocal Nonlinear Schrödinger Equation”, Nonlinearity, 29:3 (2016), 915–946
[24] Ablowitz, M. J., Luo, X.-D., and Musslimani, Z. H., “Inverse Scattering Transform for the Nonlocal Nonlinear Schrödinger Equation with Nonzero Boundary Conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp.
[25] Valchev, T., “On a Nonlocal Nonlinear Schrödinger Equation”, Mathematics in Industry, ed. A. Slavova, Cambridge Scholars Publ., Cambridge, 2014, 36–52
[26] Gürses, M. and Pekcan, A., “Nonlocal Nonlinear Schrödinger Equations and Their Soliton Solutions”, J. Math. Phys., 59:5 (2018), 051501, 17 pp.
[27] Gerdjikov, V. S. and Saxena, A., “Complete Integrability of Nonlocal Nonlinear Schrödinger Equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp.
[28] Bender, C. M., PT Symmetry in Quantum and Classical Physics, World Sci., Hackensack, N.J., 2019, xxii+446 pp.
[29] Bender, C. M., Introduction to PT-Symmetric Quantum Theory, 2005, 23 pp., arXiv: quant-ph/0501052
[30] Bender, C. M., “PT Symmetric Quantum Theory”, J. Phys. Conf. Ser., 631 (2015), 012002, 12 pp.
[31] Karasu-Kalkanli, A., Karasu, A., Sakovich, A., Sakovich, S., and Turhan, R., “A New Integrable Generalization of the Korteweg – de Vries Equation”, J. Math. Phys., 49:7 (2008), 073516, 10 pp.
[32] Kuperschmidt, B. A., “KdV6: An Integrable System”, Phys. Lett. A, 372:15 (2008), 2634–2639
[33] Kundu, A., “Exact Accelerating Solitons in Nonholonomic Deformation of the KdV Equation with Two-Fold Integrable Hierarchy”, J. Phys. A, 41:49 (2008), 495201, 7 pp.
[34] Kundu, A., Sahadevan, R., and Nalinidevi, L., “Nonholonomic Deformation of KdV and mKdV Equations and Their Symmetries, Hierarchies and Integrability”, J. Phys. A, 42:11 (2009), 115213, 13 pp.
[35] Kundu, A., “Two-Fold Integrable Hierarchy of Nonholonomic Deformation of the Derivative Nonlinear Schrödinger and the Lenells – Fokas Equation”, J. Math. Phys., 51:2 (2010), 022901, 17 pp.
[36] Guha, P., “Nonholonomic Deformation of Generalized KdV-Type Equations”, J. Phys. A, 42:34 (2009), 345201, 17 pp.
[37] Guha, P., “Nonholonomic Deformation of Coupled and Supersymmetric KdV Equations and Euler – Poincaré – Suslov Method”, Rev. Math. Phys., 27:4 (2015), ID 1550011-25
[38] Abhinav, K., Guha, P., and Mukherjee, I., “Study of Quasi-Integrable and Non-Holonomic Deformation of Equations in the NLS and DNLS Hierarchy”, J. Math. Phys., 59:10 (2018), 101507, 18 pp.
[39] Fokas, A. S. and Pelloni, B., “A Transform Method for Evolution PDEs on the Interval”, IMA J. Appll. Math., 70:4 (2005), 564–587
[40] Fokas, A. S. and Pelloni, B., Unified Transform for Boundary Value Problems: Applications and Advances, SIAM, Philadelphia, Pa., 2014, 305 pp.
[41] Krupková, O., “Mechanical Systems with Nonholonomic Constraints”, J. Math. Phys., 38:10 (1997), 5098–5126
[42] Ferreira, L. A. and Zakrzewski, W. J., “The Concept of Quasi-Integrability: A Concrete Example”, J. High Energy Phys., 2011, no. 5, 130, 39 pp.
[43] Blas, H. and Zambrano, M., “Quasi-Integrability in the Modified Defocusing Non-Linear Schrödinger Model and Dark Solitons”, J. High Energy Phys., 2016, no. 3, 005, front matter + , 47 pp.
[44] Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A., “A Self-Dual Yang – Mills Hierarchy and Its Reductions to Integrable Systems in $1+1$ and $2+1$ Dimensions”, Comm. Math. Phys., 158:2 (1993), 289–314
[45] Ablowitz, M. J., Chakravarty, S., and Halburd, R. G., “Integrable Systems and Reductions of the Self-Dual Yang – Mills Equations: Integrability, Topological Solitons and Beyond”, J. Math. Phys., 44:8 (2003), 3147–3173
[46] Ablowitz, M. J. and Musslimani, Z. H., Integrable Nonlocal Asymptotic Reductions of Physically Significant Nonlinear Equations, 2019, 9 pp., arXiv: 1903.06752 [nlin.SI]
[47] Mukherjee, I., Guha, P., and Abhinav, K., Studies on Different Aspects of Nonlocal Integrable Systems: Soliton Solutions, Deformations and Reductions from SDYM Equations (to appear)