0
2013
Impact Factor

    Hidden Maxwell Stratum in Euler's Elastic Problem

    2019, Vol. 15, no. 4, pp.  409-414

    Author(s): Ardentov A. A.

    This investigation continues the study of the classical problem of stationary configurations of an elastic rod on a plane. The length of the rod, the ends of the rod and the directions at the ends are fixed. The problem was first studied by Leonard Euler in 1744 and the optimal synthesis problem is still an open problem. Euler described a family of geodesics containing the solutions, which are called Euler elasticae. It is known that sufficiently small pieces of Euler elasticae are optimal, i.e., they have a minimum of the potential energy. In theory, the point where an optimal curve loses its optimality is called a cut point. Usually several optimal curves arrive at such points, so the points have multiplicity more than 1 and are called Maxwell points. The aim of this work is to describe numerically Maxwell points where two nonsymmetric elasticae come with the same length and energy value.
    Keywords: Euler elastica, Maxwell strata, optimal control
    Citation: Ardentov A. A., Hidden Maxwell Stratum in Euler's Elastic Problem, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  409-414
    DOI:10.20537/nd190402


    Download File
    PDF, 945.38 Kb

    References

    [1] Sachkov, Yu. L., “Maxwell Strata in Euler's Elastic Problem”, J. Dyn. Contr. Syst., 14:2 (2008), 169–234  crossref  mathscinet  zmath  elib
    [2] Euler, L., Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti: Additamentum 1. De curvis elasticis, Bousquet, Lausanne, 1744  mathscinet
    [3] Arnold, V. I., Gusein-Zade, S. M., and Varchenko, A. N., Singularities of Differentiable Maps, v. 1, Modern Birkhäuser Classics, Classification of Critical Points, Caustics and Wave Fronts, Birkhäuser/Springer, New York, 2012, xii+382 pp.  mathscinet; Arnold, V. I., Gusein-Zade, S. M., and Varchenko, A. N., Singularities of Differentiable Maps, v. 2, Modern Birkhäuser Classics, Monodromy and Asymptotics of Integrals, Birkhäuser/Springer, New York, 2012, x+492 pp.  mathscinet
    [4] Sachkov, Yu. L., “Conjugate Points in Euler's Elastic Problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439  crossref  mathscinet  zmath  elib
    [5] Sachkov, Yu. L. and Sachkova, E. L., “Exponential Mapping in Euler's Elastic Problem”, J. Dyn. Control Syst., 20:4 (2014), 443–464  crossref  mathscinet  zmath  elib
    [6] Ardentov, A. A., “Multiple Solutions in Euler's Elastic Problem”, Autom. Remote Control, 79:7 (2018), 1191–1206  mathnet  crossref  mathscinet  zmath; Avtomat. i Telemekh., 2018, no. 7, 22–40 (Russian)  crossref  mathscinet  zmath



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License