0
2013
Impact Factor

    Complex Dynamics Induced by Asymmetry in Coupled Laser Systems

    2019, Vol. 15, no. 4, pp.  429-455

    Author(s): Bountis A., Kominis Y., Shena J., Kovanis V.

    Coupled semiconductor lasers are systems possessing complex dynamics, which makes them interesting for many applications in photonics. In this paper, we first review our results on the existence and stability of asymmetric phase-locked states of a single dimer consisting of two coupled semiconductor lasers. We show that stable phase-locked states of arbitrary asymmetry exist, whose field amplitude ratio and phase difference can be dynamically controlled by appropriate electronic current injection. Moreover, we obtain stable limit cycles with asymmetric characteristics, emerging through Hopf bifurcations from these phase-locked states. Also, we emphasize the importance of exceptional points, and we show that asymmetry enables their existence in extended regions of parameter space. The dynamics of asymmetric dimers under small signal modulation of the pumping current is also investigated and the occurrence of antiresonances and sharp resonances with very high frequencies is demonstrated. Finally, we describe our recent findings on optically coupled arrays of coupled dimers and explore their fascinating nonlinear dynamics. In particular, we couple in an appropriate way a large number of dimers and show that, depending on their degree of asymmetry, they exhibit organized high amplitude oscillations, or oscillate very close to phase-locked states, suggesting that such photonic networks may prove useful in a variety of beam forming and beam shaping applications.
    Keywords: coupled mode equations, semiconductor laser arrays, Hopf bifurcations, limit cycle oscillations, coherence in photonic arrays
    Citation: Bountis A., Kominis Y., Shena J., Kovanis V., Complex Dynamics Induced by Asymmetry in Coupled Laser Systems, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  429-455
    DOI:10.20537/nd190404


    Download File
    PDF, 5.15 Mb

    References

    [1] Johnson, M. T., Siriani, D. F., Peun Tan, M., and Choquette, K. D., “Beam Steering via Resonance Detuning in Coherently Coupled Vertical Cavity Laser Arrays”, Appl. Phys. Lett., 103:20 (2013), 201115, 4 pp.  crossref  adsnasa
    [2] Fryslie, S. T. M., Johnson, M. T., and Choquette, K. D., “Coherence Tuning in Optically Coupled Phased Vertical Cavity Laser Arrays”, IEEE J. Quantum Electron., 51:11 (2015), 2600206, 6 pp.  crossref
    [3] Wang, S. S. and Winful, H. G., “Dynamics of Phase-Locked Semiconductor Laser Arrays”, Appl. Phys. Lett., 52:21 (1988), 1774–1776  crossref  adsnasa
    [4] Winful, H. G. and Rahman, L., “Synchronized Chaos and Spatiotemporal Chaos in Arrays of Coupled Lasers”, Phys. Rev. Lett., 65:13 (1990), 1575–1578  crossref  adsnasa
    [5] Otsuka, K., “Self-Induced Phase Turbulence and Chaotic Itinerancy in Coupled Laser Systems”, Phys. Rev. Lett., 65:3 (1990), 329–332  crossref  adsnasa
    [6] Winful, H. G., “Instability Threshold for an Array of Coupled Semiconductor Lasers”, Phys. Rev. A, 46:9 (1992), 6093–6094  crossref  adsnasa
    [7] Rogister, F. and Roy, R., “Localized Excitations in Arrays of Synchronized Laser Oscillators”, Phys. Rev. Lett., 98:10 (2007), 104101, 4 pp.  crossref  adsnasa  elib
    [8] Soriano, M. C., García-Ojalvo, J., Mirasso, C. R., and Fischer, I., “Complex Photonics: Dynamics and Applications of Delay-Coupled Semiconductors Lasers”, Rev. Mod. Phys., 85:1 (2013), 421–470  crossref  adsnasa  elib
    [9] Shena, J., Hizanidis, J., Kovanis, V., and Tsironis, G. P., “Turbulent Chimeras in Large Semiconductor Laser Arrays”, Sci. Rep., 7 (2017), 42116, 8 pp.  crossref  adsnasa  elib
    [10] Erneux, T. and Glorieux, P., Laser Dynamics, Cambridge Univ. Press, Cambridge, 2010, 361 pp.
    [11] Valagiannopoulos, C. A. and Kovanis, V., “Judicious Distribution of Laser Emitters to Shape the Desired Far-Field Patterns”, Phys. Rev. A, 95:6 (2017), 063806, 7 pp.  crossref  adsnasa  elib
    [12] Yamamoto, Y., Takata, K., and Utsunomiya, S., “Quantum Computing vs. Coherent Computing”, New Generat. Comput., 30:4 (2012), 327–355  crossref
    [13] Utsunomiya, S., Namekata, N., Takata, K., Akamatsu, D., Inoue, S., and Yamamoto, Y., “Binary Phase Oscillation of Two Mutually Coupled Semiconductor Lasers”, Opt. Express, 23:5 (2015), 6029–6040  crossref  adsnasa
    [14] Gao, Z., Fryslie, S. T. M., Thompson, B. J., Carney, P. S., and Choquette, K. D., “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays”, Optica, 4:3 (2017), 323–329  crossref  adsnasa  elib
    [15] Ge, L. and El-Ganainy, R., “Nonlinear Modal Interactions in Parity-Time (PT) Symmetric Lasers”, Sci. Rep., 6 (2016), 24889, 11 pp.  crossref  adsnasa
    [16] Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N., and Khajavikhan, M., “Parity-Time-Symmetric Microring Lasers”, Science, 346:6212 (2014), 975–978  crossref  adsnasa
    [17] Hodaei, H., Hassan, A. U., Ren, J., Hayenga, W. E., Miri, M.-A., Christodoulides, D. N., and Khajavikhan, M., “Design Considerations for Single Mode Microring Lasers Using Parity-Time-Symmetry”, IEEE J. Sel. Top. Quantum Electron., 22:5 (2016), 1500307, 7 pp.  crossref
    [18] Liertzer, M., Ge, L., Cerjan, A., Stone, A. D., Türeci, H. E., and Rotter, S., “Pump-Induced Exceptional Points in Lasers”, Phys. Rev. Lett., 108:17 (2012), 173901, 5 pp.  crossref  adsnasa
    [19] El-Ganainy, R., Makris, K. G., Christodoulides, D. N., and Musslimani, Z. H., “Theory of Coupled Optical PT-Symmetric Structures”, Opt. Lett., 32:17 (2007), 2632–2634  crossref  adsnasa
    [20] Guo, A., Salamo, G. J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G. A., and Christodoulides, D. N., “Observation of $\mathcal{PT}$-Symmetry Breaking in Complex Optical Potentials”, Phys. Rev. Lett., 103:9 (2009), 093902, 4 pp.  crossref  adsnasa
    [21] Makris, K. G., El-Ganainy, R., Christodoulides, D. N., and Musslimani, Z. H., “$\mathcal{PT}$-Symmetric Optical Lattices”, Phys. Rev. A, 81:6 (2010), 063807, 10 pp.  crossref  adsnasa
    [22] Rüter, Ch. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., and Kip, D., “Observation of Parity-Time Symmetry in Optics”, Nat. Phys., 6 (2010), 192–195  crossref  elib
    [23] Kottos, T., “Optical Physics: Broken Symmetry Makes Light Work”, Nat. Phys., 6 (2010), 166–167  crossref  elib
    [24] Konotop, V. V., Yang, J., and Zezyulin, D. A., “Nonlinear Waves in $\mathcal{PT}$-Symmetric Systems”, Rev. Mod. Phys., 88:3 (2016), 035002, 59 pp.  crossref  adsnasa  elib
    [25] Zhou, X. and Chong, Y. D., “$\mathcal{PT}$-Symmetry Breaking and Nonlinear Optical Isolation in Coupled Microcavities”, Opt. Express, 24:7 (2016), 6916–6930  crossref  adsnasa  elib
    [26] Ramezani, H., Kottos, T., El-Ganainy, R., and Christodoulides, D. N., “Unidirectional Nonlinear $\mathcal{PT}$-Symmetric Optical Structures”, Phys. Rev. A, 82:4 (2010), 043803, 6 pp.  crossref  adsnasa  elib
    [27] Kominis, Y., Bountis, T., and Flach, S., “The Asymmetric Active Coupler: Stable Nonlinear Supermodes and Directed Transport”, Sci. Rep., 6 (2016), 33699, 7 pp.  crossref  adsnasa
    [28] Kominis, Y., Bountis, T., and Flach, S., “Stability through Asymmetry: Modulationally Stable Nonlinear Supermodes of Asymmetric Non-Hermitian Optical Couplers”, Phys. Rev. A, 95:6 (2017), 063832, 6 pp.  crossref  mathscinet  adsnasa  elib
    [29] Winful, H. G. and Wang, S. S., “Stability of Phase Locking in Coupled Semiconductor Laser Arrays”, Appl. Phys. Lett., 53:20 (1988), 1894–1896  crossref  adsnasa
    [30] Yanchuk, S., Schneider, K. R., and Recke, L., “Dynamics of Two Mutually Coupled Semiconductor Lasers: Instantaneous Coupling Limit”, Phys. Rev. E, 69:5 (2004), 056221, 12 pp.  crossref  adsnasa
    [31] Kuske, R. and Erneux, T., “Localized Synchronization of Two Coupled Solid State Lasers”, Opt. Commun., 139:1–3 (1997), 125–131  crossref  adsnasa
    [32] Hohl, A., Gavrielides, A., Erneux, T., and Kovanis, V., “Localized Synchronization in Two Coupled Nonidentical Semiconductor Lasers”, Phys. Rev. Lett., 78:25 (1997), 4745–4748  crossref  adsnasa
    [33] Aronson, D. G., Ermentrout, G. B., and Kopell, N., “Amplitude Response of Coupled Oscillators”, Phys. D, 41:3 (1990), 403–449  crossref  mathscinet  zmath
    [34] Hecht, E., Optics, 4th ed., Addison-Wesley, San Francisco, 2001, 680 pp.  adsnasa
    [35] Gao, Z., Johnson, M. T., and Choquette, K. D., “Rate Equation Analysis and Non-Hermiticity in Coupled Semiconductor Laser Arrays”, J. Appl. Phys., 123:17 (2018), 173102, 11 pp.  crossref  adsnasa
    [36] Kominis, Y., Kovanis, V., and Bountis, T., “Spectral Signatures of Exceptional Points and Bifurcations in the Fundamental Active Photonic Dimer”, Phys. Rev. A, 96:5 (2017), 053837, 5 pp.  crossref  adsnasa  elib
    [37] Kominis, Y., Kovanis, V., and Bountis, T., “Controllable Asymmetric Phase Locked States of the Fundamental Active Photonic Dimer”, Phys. Rev. A, 96:4 (2017), 043836, 9 pp.  crossref  mathscinet  adsnasa  elib
    [38] Papoulis, A. and Pillai, S. U., Probability, Random Variables and Stochastic Processes, 2nd ed., McGraw-Hill, New York, 1984, xvi+576 pp.  mathscinet  zmath  adsnasa
    [39] Kominis, Y., Choquette, K. D., Bountis, A., and Kovanis, V., “Exceptional Points in Two Dissimilar Coupled Diode Lasers”, Appl. Phys. Lett., 113:8 (2018), 081103, 4 pp.  crossref  adsnasa
    [40] Kominis, Y., Choquette, K. D., Kovanis, V., and Bountis, A., “Antiresonances and Ultrafast Resonances in Coupled Twin Photonic Oscillator”, IEEE Photonics J., 11:1 (2019), 6 pp.  crossref
    [41] Kominis, Y., Kovanis, V., and Bountis, A., Radically Tunable Ultrafast Photonic Oscillators via Differential Pumping, 2019, 8 pp., arXiv: 1911.04179 [physics.optics]
    [42] Hodaei, H., Hassan, A. U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D. N., and Khajavikhan, M., “Enhanced Sensitivity at Higher-Order Exceptional Points”, Nature, 548 (2017), 187–191  crossref  adsnasa
    [43] Ren, J., Hodaei, H., Harari, G., Hassan, A. U., Chow, W., Soltani, M., Christodoulides, D., and Khajavikhan, M., “Ultrasensitive Micro-Scale Parity-Time-Symmetric Ring Laser Gyroscope”, Opt. Lett., 42:8 (2017), 1556–1559  crossref  adsnasa
    [44] Liu, Zh.-P., Zhang, J., Özdemir, Ş. K., Peng, B., Jing, H., Lü, X.-Y., Li, Ch.-W., Yang, L., Nori, F., and Liu, Y.-X., “Metrology with $\mathcal{PT}$-Symmetric Cavities: Enhanced Sensitivity near the $\mathcal{PT}$-Phase Transition”, Phys. Rev. Lett., 117:11 (2016), 110802, 6 pp.  crossref  adsnasa
    [45] Chen, W., Özdemir, Ş. K., Zhao, G., Wiersig, J., and Yang, L., “Exceptional Points Enhance Sensing in an Optical Microcavity”, Nature, 548 (2017), 192–195  crossref  adsnasa
    [46] Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M. A., Ren, J., Rechtsman, M. C., Segev, M., Christodoulides, D. N., and Khajavikhan, M., “Edge-Mode Lasing in 1D Topological Active Arrays”, Phys. Rev. Lett., 120:11 (2018), 113901, 6 pp.  crossref  adsnasa
    [47] Wilson, G. A., DeFreez, R. K., and Winful, H. G., “Modulation of Twin-Emitter Semiconductor Lasers beyond the Frequency of Relaxation Oscillations”, Opt. Commun., 82:3–4 (1991), 293–297  crossref  adsnasa
    [48] Wilson, G. A., DeFreez, R. K., and Winful, H. G., “Modulation of Phased-Array Semiconductor Lasers at K-Band Frequencies”, IEEE J. Quantum Electron., 27:6 (1991), 1696–1704  crossref  adsnasa
    [49] Sames, C., Chibani, H., Hamsen, C., Altin, P. A., Wilk, T., and Rempe, G., “Antiresonance Phase Shift in Strongly Coupled Cavity QED”, Phys. Rev. Lett., 112:4 (2014), 043601, 5 pp.  crossref  adsnasa
    [50] Koschny, T., Markoš, P., Smith, D. R., and Soukoulis, C. M., “Resonant and Antiresonant Frequency Dependence of the Effective Parameters of Metamaterials”, Phys. Rev. E, 68:6 (2003), 065602, 4 pp.  crossref  adsnasa
    [51] Dilena, M. and Morassi, A., “The Use of Antiresonances for Crack Detection in Beams”, J. Sound Vibration, 276:1–2 (2004), 195–214  crossref  adsnasa
    [52] Usechak, N. G., Grupen, M., Naderi, N., Li, Y., Lester, L. F., and Kovanis, V., “Modulation Effects in Multi-Section Semiconductor Lasers”, Proc. SPIE 7933, Physics and Simulation of Optoelectronic Devices XIX (San Francisco, Calif., 2011), 79331I, 11 pp.
    [53] Glasser, L. A., “A Linearized Theory for the Diode Laser in an External Cavity”, IEEE J. Quantum Electron., 16:5 (1980), 525–531  crossref  adsnasa
    [54] Pochet, M., Usechak, N. G., Schmidt, J., and Lester, L. F., “Modulation Response of a Long-Cavity, Gain-Levered Quantum-Dot Semiconductor Laser”, Opt. Express, 22:2 (2014), 1726–1734  crossref  adsnasa
    [55] Zehnlé, V., “Theoretical Model for Coupled Solid-State Lasers”, Phys. Rev. A, 62:3 (2000), 033814, 10 pp.  crossref  adsnasa
    [56] Kouznetsov, D., Bisson, J., Shirakawa, A., and Ueda, K., “Limits of Coherent Addition of Lasers: Simple Estimate”, Opt. Rev., 12:6 (2005), 445–447  crossref
    [57] García-Ojalvo, J., Casademont, J., Torrent, M. C., Mirasso, C. R., and Sancho, J. M., “Coherence and Synchronization in Diode-Laser Arrays with Delayed Global Coupling”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:11 (1999), 2225–2229  crossref  zmath
    [58] Fryslie, S. T. M., Gao, Z., Dave, H., Thompson, B. J., Lakomy, K., Lin, Sh., Decker, P. J., McElfresh, D. K., Schutt-Ainé, J. E., and Choquette, K. D., “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays”, IEEE J. Sel. Top. Quantum Electron., 23:6 (2017), 1700409, 9 pp.  crossref
    [59] Xun, M., Xu, Ch., Deng, J., Xie, Y., Jiang, G., Wang, J., Xu, K., and Chen, H., “Wide Operation Range In-Phase Coherently Coupled Vertical Cavity Surface Emitting Laser Array Based on Proton Implantation”, Opt. Lett., 40:10 (2015), 2349–2352  crossref  adsnasa  elib
    [60] Philipp, R. and Elisabeth, M., “Spatially Coherent Radiation from an Array of GaAs Lasers”, Appl. Phys. Lett., 26:8 (1975), 475–477  crossref  adsnasa



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License