Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$

    2019, Vol. 15, no. 4, pp.  457-475

    Author(s): Gajić B., Jovanović B.

    We consider the nonholonomic problem of rolling without slipping and twisting of a balanced ball over a fixed sphere in $\mathbb{R}^n$. By relating the system to a modified LR system, we prove that the problem always has an invariant measure. Moreover, this is a~$SO(n)$-Chaplygin system that reduces to the cotangent bundle $T^*S^{n-1}$. We present two integrable cases. The first one is obtained for a special inertia operator that allows the Chaplygin Hamiltonization of the reduced system. In the second case, we consider the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, ${I=diag(I_1,\ldots,I_n)}$ with a symmetry $I_1=I_2=\ldots=I_{r} \ne I_{r+1}=I_{r+2}=\ldots=I_n$. It is shown that general trajectories are quasi-periodic, while for $r\ne 1$, $n-1$ the Chaplygin reducing multiplier method does not apply.
    Keywords: nonholonomic Chaplygin systems, invariant measure, integrability
    Citation: Gajić B., Jovanović B., Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  457-475

    Download File
    PDF, 361.12 Kb


    [1] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp.  crossref  mathscinet  zmath
    [2] Bakša, A., “On Geometrization of Some Nonholonomic Systems”, Theor. Appl. Mech., 44:2 (2017), 133–140  crossref; Mat. Vesnik, 27 (1975), 233–240 (Russian)  zmath
    [3] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., “Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [4] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [5] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., “Geometrisation of Chaplygin's Reducing Multiplier Theorem”, Nonlinearity, 28:7 (2015), 2307–2318  crossref  mathscinet  zmath  adsnasa  elib
    [6] Bolsinov, A. V., “Complete Commutative Subalgebras in Polynomial Poisson Algebras: A Proof of the Mischenko – Fomenko Conjecture”, Theor. Appl. Mech., 43:2 (2016), 145–168  crossref  elib
    [7] Borisov, A. V. and Fedorov, Yu. N., “On Two Modified Integrable Problems in Dynamics”, Mosc. Univ. Mech. Bull., 50:6 (1995), 16–18  mathnet  mathscinet  zmath; Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6, 102–105 (Russian)  zmath
    [8] Borisov, A. V., Fedorov, Yu. N., and Mamaev, I. S., “Chaplygin Ball over a Fixed Sphere: An Explicit Integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [9] Borisov, A. V. and Mamaev, I. S., “Rolling of a Non-Homogeneous Ball over a Sphere without Slipping and Twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [10] Borisov, A. V., Mamaev, I. S., and Treschev, D. V., “Rolling of a Rigid Body without Slipping and Spinning: Kinematics and Dynamics”, J. Appl. Nonlinear Dyn., 2:2 (2013), 161–173  crossref  zmath
    [11] Braden, H. W., “A Completely Integrable Mechanical System”, Lett. Math. Phys., 6:6 (1982), 449–452  crossref  mathscinet  zmath  adsnasa
    [12] Cantrijn, F., Cortés, J., de León, M., and Martín de Diego, D., “On the Geometry of Generalized Chaplygin Systems”, Math. Proc. Cambridge Philos. Soc., 132:2 (2002), 323–351  crossref  mathscinet  zmath
    [13] Chaplygin, S. A., “On a Ball's Rolling on a Horizontal Plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148  mathnet  crossref  mathscinet  zmath; Math. Sb., 24:1 (1903), 139–168 (Russian)
    [14] Chaplygin, S. A., “On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376  mathnet  crossref  mathscinet  zmath  adsnasa  elib; Mat. Sb., 28:2 (1912), 303–314 (Russian)
    [15] Davison, Ch. M., Dullin, H. R., and Bolsinov, A. V., “Geodesics on the Ellipsoid and Monodromy”, J. Geom. Phys., 57:12 (2007), 2437–2454  crossref  mathscinet  zmath  adsnasa  elib
    [16] Ehlers, K., Koiller, J., Montgomery, R., and Rios, P. M., “Nonholonomic Systems via Moving Frames: Cartan Equivalence and Chaplygin Hamiltonization”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser, Boston, Mass., 2005, 75–120  crossref  mathscinet  zmath  elib
    [17] Koiller, J. and Ehlers, K., “Rubber Rolling over a Sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [18] Fassò, F., García-Naranjo, L. C., and Montaldi, J., “Integrability and Dynamics of the $n$-Dimensional Symmetric Veselova Top”, J. Nonlinear Sci., 29:3 (2019), 1205–1246  crossref  mathscinet  zmath  adsnasa
    [19] Fassò, F., García-Naranjo, L. C., and Sansonetto, N., “Moving Energies As First Integrals of Nonholonomic Systems with Affine Constraints”, Nonlinearity, 31:3 (2018), 755–782  crossref  mathscinet  zmath  adsnasa
    [20] Fedorov, Yu. N. and Jovanović, B., “Nonholonomic LR Systems As Generalized Chaplygin Systems with an Invariant Measure and Flows on Homogeneous Spaces”, J. Nonlinear Sci., 14:4 (2004), 341–381  crossref  mathscinet  zmath  adsnasa
    [21] Fedorov, Yu. N. and Kozlov, V. V., “Various Aspects of $n$-Dimensional Rigid Body Dynamics”, Amer. Math. Soc. Transl. Ser. 2, 168 (1995), 141–171  mathscinet  zmath
    [22] Field, M. J., “Equivariant Dynamical Systems”, Trans. Amer. Math. Soc., 259:1 (1980), 185–205  crossref  mathscinet  zmath
    [23] Gajić, B., “The Rigid Body Dynamics: Classical and Algebro-Geometric Integration”, Zb. Rad. (Beogr.), 16(24) (2013), 5–44  mathscinet  zmath
    [24] Gajić, B. and Jovanović, B., “Nonholonomic Connections, Time Reparametrizations, and Integrability of the Rolling Ball over a Sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  adsnasa
    [25] García-Naranjo, L. C., “Generalisation of Chaplygin's Reducing Multiplier Theorem with an Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A, 52:20 (2019), 205203, 16 pp.  crossref  mathscinet  adsnasa
    [26] García-Naranjo, L. C., “Hamiltonisation, Measure Preservation and First Integrals of the Multi-Dimensional Rubber Routh Sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88  crossref
    [27] Jovanović, B., “Note on a Ball Rolling over a Sphere: Integrable Chaplygin System with an Invariant Measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108  crossref
    [28] Jovanović, B., “Hamiltonization and Integrability of the Chaplygin Sphere in $\mathbb{R}^n$”, J. Nonlinear. Sci., 20:5 (2010), 569–593  crossref  mathscinet  zmath  adsnasa
    [29] Jovanović, B., “The Jacobi – Rosochatius Problem on an Ellipsoid: The Lax Representations and Billiards”, Arch. Ration. Mech. Anal., 210:1 (2013), 101–131  crossref  mathscinet  zmath  elib
    [30] Jovanović, B., “Invariant Measures of Modified LR and L+R Systems”, Regul. Chaotic Dyn., 20:5 (2015), 542–552  mathnet  crossref  mathscinet  zmath  adsnasa
    [31] Jovanović, B., “Noether Symmetries and Integrability in Hamiltonian Time-Dependent Mechanics”, Theor. Appl. Mech., 43:2 (2016), 255–273  crossref  elib
    [32] Jovanović, B., “Symmetries of Line Bundles and Noether Theorem for Time-Dependent Nonholonomic Systems”, J. Geom. Mech., 10:2 (2018), 173–187  crossref  mathscinet  zmath
    [33] Jovanović, B., “Rolling Balls over Spheres in $\mathbb R^n$”, Nonlinearity, 31:9 (2018), 4006–4031  crossref  mathscinet  adsnasa
    [34] Koiller, J., “Reduction of Some Classical Nonholonomic Systems with Symmetry”, Arch. Rational Mech. Anal., 118:2 (1992), 113–148  crossref  mathscinet  zmath  adsnasa
    [35] Moser, J., “Various Aspects of Integrable Hamiltonian Systems”, Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., 8, Birkhäuser, Boston, Mass., 1980, 233–289  mathscinet
    [36] Stanchenko, S. V., “Non-Holonomic Chaplygin Systems”, J. Appl. Math. Mech., 53:1 (1989), 11–17  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 53:1 (1989), 16–23 (Russian)  mathscinet  zmath
    [37] Tsiganov, A. V., “Integrable Euler Top and Nonholonomic Chaplygin Ball”, J. Geom. Mech., 3:3 (2011), 337–362  crossref  mathscinet  zmath  elib
    [38] Tsiganov, A. V., “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [39] Veselov, A. P. and Veselova, L. E., “Flows on Lie Groups with a Nonholonomic Constraint and Integrable Non-Hamiltonian Systems”, Funct. Anal. Appl., 20:5 (1986), 308–309  mathnet  mathscinet  zmath; Funktsional. Anal. i Prilozhen., 20:4 (1986), 65–66 (Russian)  mathscinet  zmath
    [40] Veselov, A. P. and Veselova, L. E., “Integrable Nonholonomic Systems on Lie Groups”, Math. Notes, 44:5 (1988), 810–819  mathnet  crossref  mathscinet  zmath; Mat. Zametki, 44:5 (1988), 604–619 (Russian)  mathscinet

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License