0
2013
Impact Factor

    Complex Dynamics in Generalizations of the Chaplygin Sleigh


    2019, Vol. 15, no. 4, pp.  551-559

    Author(s): Kuznetsov S. P.

    The article considers the Chaplygin sleigh on a plane in a potential well, assuming that an external potential force is supplied at the mass center. Two particular cases are studied in some detail, namely, a one-dimensional potential valley and a potential with rotational symmetry; in both cases the models reduce to four-dimensional differential equations conserving mechanical energy. Assuming the potential functions to be quadratic, various behaviors are observed numerically depending on the energy, from those characteristic to conservative dynamics (regularity islands and chaotic sea) to strange attractors. This is another example of a nonholonomic system manifesting these phenomena (similar to those for Celtic stone or Chaplygin top), which reflects a fundamental nature of these systems occupying an intermediate position between conservative and dissipative dynamics.
    Keywords: Chaplygin sleigh, nonholonomic system, chaos, attractor
    Citation: Kuznetsov S. P., Complex Dynamics in Generalizations of the Chaplygin Sleigh, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  551-559
    DOI:10.20537/nd190414


    Download File
    PDF, 752.43 Kb

    References

    [1] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp.  mathscinet  zmath
    [2] Bloch, A., Nonholonomic Mechanics and Control, Interdiscip. Appl. Math., 24, Springer, New York, 2003, 503 pp.  crossref  mathscinet  zmath
    [3] Borisov, A. V. and Mamaev, I. S., “The Rolling of Rigid Body on a Plane and Sphere: Hierarchy of Dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 177–200  mathnet  crossref  mathscinet  zmath
    [4] Kozlov, V. V., “On the Theory of Integration of the Equations of Nonholonomic Mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 161–176  mathnet  crossref  mathscinet  zmath
    [5] Borisov, A. V. and Mamaev, I. S., “Strange Attractors in Rattleback Dynamics”, Physics-Uspekhi, 46:4 (2003), 393–403  mathnet  crossref  adsnasa; Uspekhi Fiz. Nauk, 173:4 (2003), 407–418 (Russian)  crossref
    [6] Borisov, A. V., Jalnine, A. Yu., Kuznetsov, S. P., Sataev, I. R., and Sedova, J. V., “Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [7] Borisov, A. V., Kazakov, A. O., and Kuznetsov, S. P., “Nonlinear Dynamics of the Rattleback: A Nonholonomic Model”, Physics-Uspekhi, 57:5 (2014), 453–460  mathnet  crossref  mathscinet  adsnasa  elib; Uspekhi Fiz. Nauk, 184:5 (2014), 493–500 (Russian)  crossref
    [8] Sagdeev, R.Ż., Usikov, D. A., and Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Acad. Publ., Chur, 1990, 675 pp.  mathscinet
    [9] Reichl, L. E., The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, Springer, New York, 2004, xvi+551 pp.  mathscinet
    [10] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp.  crossref  mathscinet  adsnasa
    [11] Schuster, H. G. and Just, W., Deterministic Chaos: An Introduction, Wiley-VCH, Weinheim, 2005, 312 pp.  mathscinet  zmath
    [12] Kuznetsov, S. P., Dynamical Chaos, 2nd ed., Fizmatlit, Moscow, 2006, 356 pp. (Russian)
    [13] Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp.  mathscinet  zmath
    [14] Spitzer, F., Principles of Random Walk, Grad. Texts in Math., 34, 2nd ed., Springer, New York, 2001, 422 pp.  mathscinet  zmath
    [15] Kuznetsov, S. P., “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref  mathscinet  zmath  adsnasa



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License