Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System
2019, Vol. 15, no. 4, pp. 561-568
Author(s): Mashtakov A. P.
| Download File PDF, 4.77 Mb | 
| References | |
| [1] | Bekkers, E. J., Duits, R., Mashtakov, A., and Sanguinetti, G. R., “A PDE Approach to Data-Driven Sub-Riemannian Geodesics in         | 
| [2] | Duits, R., Ghosh, A., Dela Haije, T., and Mashtakov, A., “On Sub-Riemannian Geodesics in         | 
| [3] | Mashtakov, A. P. and Popov, A. Yu., “Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space”, Regul. Chaotic Dyn., 22:8 (2017),         | 
| [4] | Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on         | 
| [5] | Franceschiello, B., Mashtakov, A., Citti, G., and Sarti, A., “Geometrical Optical Illusion via Sub-Riemannian Geodesics in the Roto-Translation Group”, Differential Geom. Appl., 65 (2019),       | 
| [6] | Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003),   | 
| [7] | Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006),     | 
| [8] | Tax, C. M., Duits, R., Vilanova, A., ter Haar Romeny, B. M., Hofman, P., Wagner, L., Leemans, A., and Ossenblok, P., “Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery”, PLoS ONE, 9:7 (2014), e101524       | 
| [9] | Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, xx+259 pp.     | 
| [10] | Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004       | 
| [11] | Sachkov, Yu. L., “Control Theory on Lie Groups”, J. Math. Sci. (N. Y.), 156:3 (2009),        ; Sovrem. Mat. Fundam. Napravl., 27 (2007), | 
| [12] | Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry from Hamiltonian Viewpoint, hal-02019181 https://hal.archives-ouvertes.fr/hal-02019181 (to appear) | 
| [13] | Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monogr. Appl. Comput. Math., 3, 2nd ed., Cambridge Univ. Press, Cambridge, 1999, xx+378 pp.       | 
| [14] | Mirebeau, J.-M., “Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction”, SIAM J. Numer. Anal., 52:4 (2014),       | 
| [15] | Sanguinetti, G., Duits, R., Bekkers, E., Janssen, M. H. J., Mashtakov, A., and Mirebeau, J. M., “Sub-Riemannian Fast Marching in     | 
| [16] | Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M., “Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis”, J. Math. Imaging Vis., 60:6 (2018),       | 
| [17] | Bekkers, E., Duits, R., Berendschot, T., and Romeny, B. H., “A Multi-Orientation Analysis Approach to Retinal Vessel Tracking”, J. Math. Imaging Vis., 49:3 (2014),       | 
| [18] | Peyré, G., Péchaud, M., Keriven, R., and Cohen, L. D., “Geodesic Methods in Computer Vision and Graphics”, Found. Trends Comput. Graph. Vis., 5:34 (2010), | 

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License
