0
2013
Impact Factor

    Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System

    2019, Vol. 15, no. 4, pp.  561-568

    Author(s): Mashtakov A. P.

    This paper summarizes results of a sequence of works related to usage of sub-Riemannian (SR) geometry in image processing and modeling of the human visual system. In recent research in psychology of vision (J. Petitot, G.Citti, A. Sarti) it was shown that SR geodesics appear as natural curves that model a mechanism of the primary visual cortex V1 of a human brain for completion of contours that are partially corrupted or hidden from observation. We extend the model to include data adaptivity via a suitable external cost in the SR metric. We show that data adaptive SR geodesics are useful in real image analysis applications and provide a refined model of V1 that takes into account the presence of a visual stimulus.
    Keywords: sub-Riemannian, detection of salient lines, vision, visual cortex, brain-inspired methods
    Citation: Mashtakov A. P., Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  561-568
    DOI:10.20537/nd190415


    Download File
    PDF, 4.77 Mb

    References

    [1] Bekkers, E. J., Duits, R., Mashtakov, A., and Sanguinetti, G. R., “A PDE Approach to Data-Driven Sub-Riemannian Geodesics in $SE(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770  crossref  mathscinet  zmath  elib
    [2] Duits, R., Ghosh, A., Dela Haije, T., and Mashtakov, A., “On Sub-Riemannian Geodesics in $SE(3)$ Whose Spatial Projections do not Have Cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805  crossref  mathscinet  zmath  elib
    [3] Mashtakov, A. P. and Popov, A. Yu., “Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space”, Regul. Chaotic Dyn., 22:8 (2017), 952–957  mathnet  crossref  mathscinet  adsnasa
    [4] Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on $SO(3)$”, J. Math. Imaging Vis., 58:2 (2017), 239–264  crossref  mathscinet  zmath  elib
    [5] Franceschiello, B., Mashtakov, A., Citti, G., and Sarti, A., “Geometrical Optical Illusion via Sub-Riemannian Geodesics in the Roto-Translation Group”, Differential Geom. Appl., 65 (2019), 55–77  crossref  mathscinet  zmath
    [6] Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309  crossref
    [7] Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006), 307–326  crossref  mathscinet
    [8] Tax, C. M., Duits, R., Vilanova, A., ter Haar Romeny, B. M., Hofman, P., Wagner, L., Leemans, A., and Ossenblok, P., “Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery”, PLoS ONE, 9:7 (2014), e101524  crossref  adsnasa  elib
    [9] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, xx+259 pp.  mathscinet  zmath
    [10] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004  crossref  mathscinet  zmath
    [11] Sachkov, Yu. L., “Control Theory on Lie Groups”, J. Math. Sci. (N. Y.), 156:3 (2009), 381–439  mathnet  crossref  mathscinet  zmath; Sovrem. Mat. Fundam. Napravl., 27 (2007), 5–59 (Russian)
    [12] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry from Hamiltonian Viewpoint, hal-02019181 https://hal.archives-ouvertes.fr/hal-02019181 (to appear)
    [13] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monogr. Appl. Comput. Math., 3, 2nd ed., Cambridge Univ. Press, Cambridge, 1999, xx+378 pp.  mathscinet  zmath  adsnasa
    [14] Mirebeau, J.-M., “Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction”, SIAM J. Numer. Anal., 52:4 (2014), 1573–1599  crossref  mathscinet  zmath
    [15] Sanguinetti, G., Duits, R., Bekkers, E., Janssen, M. H. J., Mashtakov, A., and Mirebeau, J. M., “Sub-Riemannian Fast Marching in $SE(2)$”, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Comput. Sci., 9423, eds. A. Pardo, J. Kittler, Springer, Cham, 2015, 366–374  crossref  mathscinet
    [16] Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M., “Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis”, J. Math. Imaging Vis., 60:6 (2018), 816–848  crossref  mathscinet  zmath
    [17] Bekkers, E., Duits, R., Berendschot, T., and Romeny, B. H., “A Multi-Orientation Analysis Approach to Retinal Vessel Tracking”, J. Math. Imaging Vis., 49:3 (2014), 583–610  crossref  zmath  elib
    [18] Peyré, G., Péchaud, M., Keriven, R., and Cohen, L. D., “Geodesic Methods in Computer Vision and Graphics”, Found. Trends Comput. Graph. Vis., 5:34 (2010), 197–397



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License