Inverse Dynamics-Based Motion Control of a Fluid-Actuated Rolling Robot


    2019, Vol. 15, no. 4, pp.  611-622

    Author(s): Tafrishi S. A., Bai Y., Svinin M., Esmaeilzadeh E., Yamamoto M.

    In this paper, the rest-to-rest motion planning problem of a fluid-actuated spherical robot is studied. The robot is driven by moving a spherical mass within a circular fluid-filled pipe fixed internally to the spherical shell. A mathematical model of the robot is established and two inverse dynamics-based feed-forward control methods are proposed. They parameterize the motion of the outer shell or the internal moving mass as weighted Beta functions. The feasibility of the proposed feed-forward control schemes is verified under simulations.
    Keywords: inverse dynamics, motion planning, spherical robots, fluid actuator
    Citation: Tafrishi S. A., Bai Y., Svinin M., Esmaeilzadeh E., Yamamoto M., Inverse Dynamics-Based Motion Control of a Fluid-Actuated Rolling Robot, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  611-622
    DOI:10.20537/nd190420


    Download File
    PDF, 733.41 Kb

    References

    [1] Armour, Rh. H. and Vincent, J. F., “Rolling in Nature and Robotics: A Review”, J. Bionic Eng., 3:4 (2006), 195–208  crossref
    [2] Halme, A., Schonberg, T., and Wang, Y., “Motion Control of a Spherical Mobile Robot”, Proc. of the 4th Internat. Workshop on Advanced Motion Control (Mie, Japan, 1996), v. 1, 259–264
    [3] Bicchi, A., Balluchi, A., Prattichizzo, D., and Gorelli, A., “Introducing the “SPHERICLE”: An Experimental Testbed for Research and Teaching in Nonholonomy”, Proc. of the IEEE Internat. Conf. on Robotics and Automation, The IEEE Internat. Conf. on Robotics and Automation (Albuquerque, N.M., USA, 1997), v. 3, 2620–2625
    [4] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [5] Chowdhury, A. R., Soh, G. S., Foong, S., and Wood, K. L., “Implementation of Caterpillar Inspired Rolling Gait and Nonlinear Control Strategy in a Spherical Robot”, J. Bionic Eng., 15:2 (2018), 313–328  crossref
    [6] Javadi, A. H. and Mojabi, P., “Introducing August: A Novel Strategy for an Omnidirectional Spherical Rolling Robot”, Proc. of the 2002 IEEE Internat. Conf. on Robotics & Automation, The 2002 IEEE Internat. Conf. on Robotics & Automation (Washington, D.C., May 2002), v. 4, 3527–3533
    [7] Behar, A., Matthews, J., Carsey, F., and Jones, J., “NASA/JPL Tumbleweed Polar Rover”, Proc. of the 2004 IEEE Aerospace Conf., The 2004 IEEE Aerospace Conf. (Big Sky, Mont., March 2004), v. 1, 395–407
    [8] Liu, D., Sun, H., and Jia, Q., “Stabilization and Path Following of a Spherical Robot”, Proc. of the IEEE Conf. on Robotics, Automation and Mechatronics, The IEEE Conf. on Robotics, Automation and Mechatronics (Chengdu, China, Sept 2008), 676–682  zmath
    [9] Mahboubi, S., Seyyed Fakhrabadi, M. M., and Ghanbari, A., “Design and Implementation of a Novel Spherical Mobile Robot”, J. Intell. Robot. Syst., 71:1 (2013), 43–64  crossref  mathscinet  elib
    [10] Tafrishi, S. A., “RollRoller” Novel Spherical Mobile Robot Basic Dynamical Analysis and Motion Simulations, Master's Dissertation, Univ. of Sheffield, Sheffield, 2014, 81 pp.
    [11] Tafrishi, S. A., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot”, ASME J. Mech. Robot., 11:4 (2019), 041010, 10 pp.  crossref
    [12] Kayacan, E., Kayacan, E., Ramon, H., and Saeys, W., “Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm”, IEEE Trans. Cybern., 43:1 (2013), 170–179  crossref
    [13] Svinin, M., Bai, Y., and Yamamoto, M., “Dynamic Model and Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), The 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), 656–661
    [14] Brown, H. B. Jr. and Xu, Y., “A Single-Wheel, Gyroscopically Stabilized Robot”, IEEE Internat. Conf. on Robotics and Automation (Minneapolis, Minn., 1996), v. 4, 3658–3663
    [15] Bhattacharya, S. and Agrawal, S. K., “Spherical Rolling Robot: A Design and Motion Planning Studies”, IEEE Trans. Robot. Autom., 16:6 (2000), 835–839  crossref
    [16] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin’s Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [17] Morinaga, A., Svinin, M., and Yamamoto, M., “A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors”, IEEE Trans. on Robotics, 30:4 (2014), 993–1002  crossref
    [18] Schroll, G. C., Design of a Spherical Vehicle with Flywheel Momentum Storage for High Torque Capabilities, Thesis for Bachelor Degree, MIT, Cambridge, Mass., 2008, 26 pp.
    [19] Tafrishi, S. A., Esmaeilzadeh, E., Svinin, M., and Yamamoto, M., “A Fluid-Actuated Driving Mechanism for Rolling Robots”, Proc. of the IEEE 4th Internat. Conf. on Advanced Robotics and Mechatronics, The IEEE 4th Internat. Conf. on Advanced Robotics and Mechatronics (ICARM, Toyonaka, Japan, July 2019), 256–261
    [20] Street, R. L., Watters, G.Ż., and Vennard, J. K., Elementary Fluid Mechanics, 7th ed., Wiley, New York, 1995, 784 pp.
    [21] Childs, P. R., Mechanical Design, 2nd ed., Butterworth-Heinemann, Oxford, 2003, 384 pp.
    [22] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [23] Balandin, D. V., Komarov, M. A., and Osipov, G. V., “A Motion Control for a Spherical Robot with Pendulum Drive”, J. Comput. Sys. Sc. Int., 52:4 (2013), 650–663  crossref  mathscinet  zmath  elib; Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2013, no. 4, 150–163 (Russian)  zmath
    [24] Bai, Y., Svinin, M., and Yamamoto, M., “Motion Planning for a Hoop-Pendulum Type of Underactuated Systems”, Proc. of the IEEE Internat. Conf. on Robotics and Automation, The IEEE Internat. Conf. on Robotics and Automation (ICRA, Stockholm, May 2016), 2739–2744
    [25] Bai, Y., Svinin, M., and Yamamoto, M., “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388  mathnet  crossref  mathscinet  zmath  adsnasa



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License