Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (as Exemplified by KUKA youBot)
Received 14 August 2019; accepted 21 January 2020
2020, Vol. 16, no. 2, pp. 291-307
Author(s): Adamov B. I., Saypulaev G. R.
The subject of this study is an omnidirectional mobile platform equipped with four
Mecanum wheels. The movement of the system on a horizontal plane is considered. The aim of
this research is to study the dynamics of the omnidirectional platform, taking into account the
design of Mecanum wheels: the shape of the rollers and their finite number. The equations of
motion of the onmidirectional mobile platform are derived taking into account the real design
of the Mecanum wheels and their slippage. A comparative analysis of the results of numerical
modeling for different models of contact friction forces is presented. It has been established
that switching of contact rollers and displacement of contact points lead to the occurrence of
high-frequency components of wheel rotation speeds, as well as an offset of their average values
(in comparison with the modeling results without taking into account the design features of the
chassis).
Download File PDF, 1007.34 Kb |
Supplement
The animations a) and b) visualize the results of a numerical simulation of the movement of the youBot mecanum platform. Translucent platforms move in accordance with the non-holonomic model 1a, and opaque ones, in accordance with model 2b (the real design of Mecanum wheels and contact Coulomb friction forces are taken into account). The control torques are chosen as functions of time $M_i=M_i (t), i=1,...4,$ according to the equations of the nonholonomic model 1a from the condition for implementing the following desired motions:
a) Translational motion in the circle.
b) Lateral motion around the circle.

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License