Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer

    Received 18 July 2019

    2019, Vol. 15, no. 3, pp.  271-283

    Author(s): Privalova V., Prosviryakov E. Y., Simonov M. A.

    A new exact solution to the Navier – Stokes equations is obtained. This solution describes the inhomogeneous isothermal Poiseuille flow of a viscous incompressible fluid in a horizontal infinite layer. In this exact solution of the Navier – Stokes equations, the velocity and pressure fields are the linear forms of two horizontal (longitudinal) coordinates with coefficients depending on the third (transverse) coordinate. The proposed exact solution is two-dimensional in terms of velocity and coordinates. It is shown that, by rotation transformation, it can be reduced to a solution describing a three-dimensional flow in terms of coordinates and a two-dimensional flow in terms of velocities. The general solution for homogeneous velocity components is polynomials of the second and fifth degrees. Spatial acceleration is a linear function. To solve the boundaryvalue problem, the no-slip condition is specified on the lower solid boundary of the horizontal fluid layer, tangential stresses and constant horizontal (longitudinal) pressure gradients specified on the upper free boundary. It is demonstrated that, for a particular exact solution, up to three points can exist in the fluid layer at which the longitudinal velocity components change direction. It indicates the existence of counterflow zones. The conditions for the existence of the zero points of the velocity components both inside the fluid layer and on its surface under nonzero tangential stresses are written. The results are illustrated by the corresponding figures of the velocity component profiles and streamlines for different numbers of stagnation points. The possibility of the existence of zero points of the specific kinetic energy function is shown. The vorticity vector and tangential stresses arising during the flow of a viscous incompressible fluid layer under given boundary conditions are analyzed. It is shown that the horizontal components of the vorticity vector in the fluid layer can change their sign up to three times. Besides, tangential stresses may change from tensile to compressive, and vice versa. Thus, the above exact solution of the Navier – Stokes equations forms a new mechanism of momentum transfer in a fluid and illustrates the occurrence of vorticity in the horizontal and vertical directions in a nonrotating fluid. The three-component twist vector is induced by an inhomogeneous velocity field at the boundaries of the fluid layer.
    Keywords: Poiseuille flow, gradient flow, exact solution, counterflow, stagnation point, vorticity
    Citation: Privalova V., Prosviryakov E. Y., Simonov M. A., Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  271-283
    DOI:10.20537/nd190306


    Download File
    PDF, 383.42 Kb

    References

    [1] Altukhov, Yu. A. and Pyshnogray, I. G., “On Allowing Slip in Plane-Parallel Flows of Polymeric Liquids”, Mekhanika kompozitsionnykh materialov i konstruktsii, 17:3 (2011), 341–350 (Russian)
    [2] Aristov, S. N. and Knyazev, D. V., “New Exact Solution of the Problem of Rotationally Symmetric Couette – Poiseuille Flow”, J. Appl. Mech. Tech. Phys., 48:5 (2007), 680–685  crossref  mathscinet  adsnasa  elib; Prikl. Mekh. Tekh. Fiz., 48:5 (2007), 71–77 (Russian)  mathscinet
    [3] Aristov, S. N., Knyazev, D. V., and Polyanin, A. D., “Exact Solutions of the Navier – Stokes Equations with the Linear Dependence of Velocity Components on Two Space Variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662  crossref  mathscinet  elib; Teoret. Osnovy Khim. Tekhnolog., 43:5 (2009), 547–566 (Russian)
    [4] Aristov, S. N., Privalova, V. V., and Prosviryakov, E. Yu., “Stationary Nonisothermal Couette Flow. Quadratic Heating of the Upper Boundary of the Fluid Layer”, Nelin. Dinam., 12:2 (2016), 167–178 (Russian)  mathnet  crossref  mathscinet  zmath
    [5] Aristov, S. N. and Prosviryakov, E. Yu., “On Laminar Flows of Planar Free Convection”, Nelin. Dinam., 9:4 (2013), 651–657 (Russian)  mathnet  crossref  mathscinet
    [6] Aristov, S. N. and Prosviryakov, E. Yu., “Inhomogeneous Couette Flow”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian)  mathnet  crossref  zmath
    [7] Aristov, S. N. and Prosviryakov, E. Yu., “Large-Scale Flows of Viscous Incompressible Vortical Fluid”, Russ. Aeronaut., 58:4 (2015), 413–418  crossref  elib; Izv. Vyssh. Uchebn. Zaved. Aviats. Tekh., 2015, no. 4, 50–54 (Russian)
    [8] Aristov, S. N. and Prosviryakov, E. Yu., “Unsteady Layered Vortical Fluid Flows”, Fluid Dynam., 51:2 (2016), 148–154  crossref  mathscinet  zmath  elib; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2016, no. 2, 25–31 (Russian)  zmath
    [9] Aristov, S. N. and Prosviryakov, E. Yu., “Nonuniform Convective Couette Flow”, Fluid Dynam., 51:5 (2016), 581–587  crossref  mathscinet  zmath  elib; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2016, no. 5, 3–9 (Russian)  zmath
    [10] Aristov, S. N. and Skulskiy, O. I., “Viscoelastic Effects of Blood Flow in Nondeformable Capillary”, Ross. Zh. Biomekh., 3:4 (1999), 24–33
    [11] Asmolov, E. S. and Manuilovich, S. V., “Instability of a Horizontal Plane-Channel Flow of a Dilute Suspension”, Fluid Dynam., 44:1 (2009), 45–54  crossref  mathscinet  zmath  adsnasa  elib; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2009, no. 1, 103–113 (Russian)  mathscinet
    [12] Birikh, R. V., Pukhnachev, V. V., and Frolovskaya, O. A., “Convective Flow in a Horizontal Channel with Non-Newtonian Surface Rheology under Time-Dependent Longitudinal Temperature Gradient”, Fluid Dynam., 50:1 (2015), 173–179  crossref  mathscinet  zmath  elib; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2015, no. 1, 192–198 (Russian)  mathscinet  zmath
    [13] Blokhin, A. M. and Tkachev, D. L., “Linear Asymptotic Instability of a Stationary Flow of a Polymeric Medium in a Plane Channel in the Case of Periodic Perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478  crossref  mathscinet  zmath  elib; Sibirsk. Zh. Industr. Matem., 17:3 (2014), 13–25 (Russian)  mathnet  zmath
    [14] Blokhin, A. M. and Semenko, R. E., “Stationary Magnetohydrodynamical Flows of Non-Isothermal Polymeric Liquid in the Flat Channel”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Matem. model. i progr., 11:4 (2018), 41–54 (Russian)  mathnet  mathscinet  zmath
    [15] Calderer, M. C. and Mukherjee, B., “On Poiseuille Flow of Liquid Crystals”, Liq. Cryst., 22:2 (1997), 121–135  crossref  mathscinet
    [16] Davey, A. and Drazin, P. G., “The Stability of Poiseuille Flow in a Pipe”, J. Fluid Mech., 36:2 (1969), 209–218  crossref  zmath  adsnasa
    [17] Drazin, P. G. and Riley, N., The Navier – Stokes Equations: A Classification of Flows and Exact Solutions, London Math. Soc. Lecture Note Ser., 334, Cambridge Univ. Press, Cambridge, 2006, 196 pp.  mathscinet
    [18] Gavrilenko, S. L., Vasin, R. A., and Shilko, S. V., “A Method for Determining Flow and Rheological Constants of Viscoplastic Biomaterials: P. 1”, Ross. Zh. Biomekh., 6:3 (2002), 92–99 (Russian)
    [19] Gol'dshtik, M. A., Shtern, V. N., and Yavorskiy, N. I., Viscous Flows with Paradoxical Properties, Nauka, Novosibirsk, 1989, 336 pp. (Russian)  mathscinet  zmath
    [20] Hartmann, J., Hg-Dynamics: 1. Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field, v. 15, Det Kgl. Danske Videnskabernes Selskkab. Math.-fys. Medd., Levin & Munksgaard, København, 1937, 28 pp.
    [21] Knyazev, D. V. and Kolpakov, I. Yu., “Exact Solutions of the Problem of the flow of a Viscous Fluid in a Cylindrical Region with a Varying Radius”, Nelin. Dinam., 11:1 (2015), 89–97 (Russian)  mathnet  crossref  zmath
    [22] Korotaev, G. K., Mikhailova, E. N., and Shapiro, N. B., Theory for Equatorial Countercurrents in the World Ocean, Naukova Dumka, Kiev, 1986, 208 pp. (Russian)
    [23] Kulikovskii, A. G. and Lyubimov, G. A., Magnetic Hydrodynamics, Logos, Mocsow, 2005, 328 pp. (Russian)
    [24] Kuznetsova, Yu. L. and Skul'skiy, O. I., “Shear Banding of the Fluid with a Nonmonotonic Dependence of Flow Stress upon Strain Rate”, Vychisl. Mekh. Sploshn. Sred, 11:1 (2018), 68–78 (Russian)
    [25] Kuznetsova, Ju. L., Skul'skiy, O. I., and Pyshnograi, G. V., “Pressure Driven Flow of a Nonlinear Viscoelastic Fluid in a Plane Channel”, Vychisl. Mekh. Sploshn. Sred, 3:2 (2010), 55–69 (Russian)
    [26] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969, 184 pp.  mathscinet  zmath
    [27] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: In 10 Vols., v. 6, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford, 2003, 552 pp.  mathscinet
    [28] Medvedev, A. E., “Three-Dimensional Motion of a Viscous Incompressible Fluid in a Narrow Tube”, J. Appl. Mech. Tech. Phys., 50:4 (2009), 566–569  crossref  mathscinet  zmath  adsnasa  elib; Prikl. Mekh. Tekhn. Fiz., 50:4(296) (2009), 28–32 (Russian)  mathscinet  zmath
    [29] Medvedev, A. E., “Unsteady Motion of a Viscous Incompressible Fluid in a Tube with a Deformable Wall”, J. Appl. Mech. Tech. Phys., 54:4 (2013), 552–560  crossref  zmath  adsnasa  elib; Prikl. Mekh. Tekhn. Fiz., 54:4(320) (2013), 45–54 (Russian)  zmath
    [30] Meleshko, S. V., Petrova, A. G., and Pukhnachev, V. V., “Characteristic Properties of the System of Equations for an Incompressible Viscoelastic Maxwell Medium”, J. Appl. Mech. Tech. Phys., 58:5 (2017), 794–800  crossref  mathscinet  zmath  adsnasa; Prikl. Mekh. Tekhn. Fiz., 58:5(345) (2017), 44–50 (Russian)  zmath
    [31] Pedley, T. J., The Fluid Mechanics of Large Blood Vessel, Cambridge Univ. Press, Cambridge, 1980, 464 pp.
    [32] Poddar, A., Mandal, Sh., Bandopadhyay, A., and Chakraborty, S., “Electrical Switching of a Surfactant Coated Drop in Poiseuille Flow”, J. Fluid Mech., 870 (2019), 27–66  crossref  mathscinet  adsnasa
    [33] Poiseuille, J.-L.-M., “Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 11 (1840), 961–967, 1041–1048
    [34] Poiseuille, J.-L.-M., “Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres(suite)”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 12 (1841), 112–115
    [35] Privalova, V. V. and Prosviryakov, E. Yu., “Exact Solutions for Three-Dimensional Nonlinear Flows of a Viscous Incompressible Fluid”, AIP Conf. Proc., 2053:1 (2018), 040077, 5 pp.  crossref  mathscinet
    [36] Privalova, V. V. and Prosviryakov, E. Yu., “Vortex Flows of a Viscous Incompressible Fluid at Constant Vertical Velocity under Perfect Slip Conditions”, Diagnostics, Resource and Mechanics of Materials and Structures, 2019, no. 2, 57–70 (Russian)  crossref
    [37] Proskurin, A. V. and Sagalakov, A. M., “A New Branch of Instability of the Magnetohydrodynamic Poiseuille Flow in a Longitudinal Magnetic Field”, Tech. Phys. Lett., 34:3 (2008), 199–201  crossref  mathscinet  adsnasa  elib; Pis'ma Zh. Tekh. Fiz., 34:5 (2008), 40–45 (Russian)
    [38] Proskurin, A. V. and Sagalakov, A. M., “Stability of the Poiseuille Flow in a Longitudinal Magnetic Field”, Tech. Phys., 57:5 (2012), 608–614  crossref  elib; Zh. Tekh. Fiz., 82:5 (2012), 29–35 (Russian)
    [39] Proskurin, A. V. and Sagalakov, A. M., “The Numerical Investigation of the Stability of the Localized Perturbation in Poiseuille Flow”, J. Comput. Technolog., 18:3 (2013), 46–53 (Russian)
    [40] Pukhnachev, V. V., “Symmetries in the Navier – Stokes Equations”, Uspekhi Mekh., 4:1 (2006), 6–76 (Russian)
    [41] Regirer, S. A., “On the Movement of Fluid in a Tube with a Deforming Wall”, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 3:4 (1968), 202–204 (Russian)
    [42] Regirer, S. A., “Quasi-One-Dimensional Theory of Peristaltic Flows”, Fluid Dynam., 19:5 (1984), 747–754  crossref  mathscinet  zmath  adsnasa; Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1984, no. 5, 89–97 (Russian)  zmath
    [43] Rykov, V. A., Titarev, V. A., and Shakhov, E. M., “Rarefied Poiseuille Flow in Elliptical and Rectangular Tubes”, Fluid Dynam., 46:3 (2011), 456–466  crossref  mathscinet  zmath  adsnasa  elib; Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2011, no. 3, 132–144 (Russian)  zmath
    [44] Shil'ko, S. V., Gavrilenko, S. L., Khizhenok, V. F., Stakan, I. N., and Salivonchik, S. P., “A Method for Defining Flow and Rheological Constants of Viscoplastic Biomaterials: P. 2”, Ross. Zh. Biomekh., 7:2 (2003), 79–84 (Russian)
    [45] Sadovnichii, V. A., Dubrovskii, V. V., Kadchenko, S. I., and Kravchenko, V. F., “Computation of the First Eigenvalues of a Boundary Value Problem on the Hydrodynamic Stability of a Poiseuille Flow in a Circular Tube”, Differ. Equ., 34:1 (1998), 49–53  mathnet  mathscinet; Differ. Uravn., 34:1 (1998), 50–53 (Russian)  mathscinet
    [46] Skul'skii, O. I. and Aristov, S. N., Mechanics of Anomalously Viscous Fluids, R&C Dynamics, Institute of Computer Science, Izhevsk, 2003, 156 pp. (Russian)
    [47] Takagi, D. and Balmforth, N. J., “Peristaltic Pumping of Rigid Objects in an Elastic Tube”, J. Fluid Mech., 672 (2011), 219–244  crossref  mathscinet  zmath  adsnasa
    [48] Tverier, V. M. and Gladysheva, O. S., “A Biomechanical Model of the Mammary Gland”, Master's J., 2013, no. 2, 240–252 (Russian)
    [49] Yin, F. and Fung, Y. C., “Peristaltic Waves in Circular Cylindrical Tubes”, ASME J. Appl. Mech., 36:3 (1969), 579–587  crossref
    [50] Zikanov, O. Yu., “On the Instability of Pipe Poiseuille Flow”, Phys. Fluids, 8:11 (1996), 2923–2932  crossref  zmath  adsnasa



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License