|
References
|
|
[1] |
Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, R&C Dynamics, Institute of Computer Science, Izhevsk, 2005, 368 pp. (Russian) |
[2] |
Cabral, H. E. and Schmidt, D. S., “Stability of Relative Equilibria in the Problem of $N+1$ Vortices”, SIAM J. Math. Anal., 31:2 (1999/2000), 231–250 |
[3] |
Campbell, L. J., “Transverse Normal Modes of Finite Vortex Arrays”, Phys. Rev. A, 24:1 (1981), 514–534 |
[4] |
Gryanik, V. M., “Dynamics of Singular Geostrophical Vortices in a $2$-Level Model of the Atmosphere (Ocean)”, Izv. Atmos. Ocean Phys., 19:3 (1983), 171–179 ; Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana, 19:3 (1983), 227–240 (Russian) |
[5] |
Havelock, T. H., “The Stability of Motion of Rectilinear Vortices in Ring Formation”, Philos. Mag., 11:70 (1931), 617–633 |
[6] |
Kizner, Z., “Stability of Point-Vortex Multipoles Revisited”, Phys. Fluids, 23:6 (2001), 064104, 11 pp. |
[7] |
Kizner, Z., “On the Stability of Two-Layer Geostrophic Point-Vortex Multipoles”, Phys. Fluids, 26:4 (2014), 046602, 18 pp. |
[8] |
Kurakin, L. G. and Yudovich, V. I., “The Stability of Stationary Rotation of a Regular Vortex Polygon”, Chaos, 12:3 (2002), 574–595 |
[9] |
Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., “Stability of Discrete Vortex Multipoles in Homogeneous and Two-Layer Rotating Fluid”, Dokl. Phys., 60:5 (2015), 217–223 ; Dokl. Akad. Nauk, 462:2 (2015), 161–167 (Russian) |
[10] |
Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., “On the Stability of Discrete Tripole, Quadrupole, Thomson' Vortex Triangle and Square in a Two-Layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334 |
[11] |
Kurakin, L. G. and Ostrovskaya, I. V., “On Stability of the Thomson's Vortex $N$-Gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879 |
[12] |
Kurakin, L. G., Lysenko, I. A., Ostrovskaya, I. V., and Sokolovskiy, M. A., “On Stability of the Thomson's Vortex $N$-Gon in the Geostrophic Model of the Point Vortices in Two-Layer Fluid”, J. Nonlinear Sci., 29:4 (2019), 1659–1700 |
[13] |
Mertz, G., “Stability of Body-Centered Polygonal Configurations of Ideal Vortices”, Phys. Fluids, 21:7 (1978), 1092–1095 |
[14] |
Morikawa, G. K. and Swenson, E. V., “Interacting Motion of Rectilinear Geostrophic Vortices”, Phys. Fluids, 14:6 (1971), 1058–1073 |
[15] |
Thomson, W., “Floating Magnets (Illustrating Vortex Systems)”, Nature, 18 (1878), 13–14 ; Kelvin, W. T., Mathematical and Physical Papers, v. 4, Cambridge Univ. Press, Cambridge, 1910, 162–164 |
[16] |
Thomson, J. J., Treatise on the Motion of Vortex Rings, Macmillan, London, 1883, 156 pp. |
[17] |
Sokolovskiy, M. A. and Verron, J., “Some Properties of Motion of $A + 1$ Vortices in a Two-Layer Rotating Fluid”, Nelin. Dinam., 2:1 (2006), 27–54 (Russian) |
[18] |
Sokolovskiy, M. A. and Verron, J., Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmos. Oceanogr. Sci. Libr., 47, Springer, Cham, 2014, XII, 382 pp. |
[19] |
Stewart, H. J., “Periodic Properties of the Semi-Permanent Atmospheric Pressure Systems”, Quart. Appl. Math., 1 (1943), 262–267 |
[20] |
Stewart, H. J., “Hydrodynamic Problems Arising from the Investigation of the Transverse Circulation in the Atmosphere”, Bull. Amer. Math. Soc., 51 (1945), 781–799 |