0
2013
Impact Factor

    Mikhail Prokhorov

    Zelenaya 38, Saratov, 410019, Russia
    Saratov Branch, Kotel’nikov Institute of Radio-Engineering and Electronics

    Publications:

    Skazkina V., Kiselev A. R., Borovkova  E. I., Ponomarenko V. I., Prokhorov M. D., Karavaev A. S.
    Abstract
    The previously proposed method for quantifying the degree of synchronization between circulatory regulation loops is used to analyze the time realizations of healthy subjects. Statistical properties of the index are studied in the analysis of two-hour records of experimental signals. In the course of this work, we investigated the properties of the estimation of the degree of synchronization using temporal realizations with different length, and we investigated the features of synchronization between the control loops under study at a time equal to hundreds of characteristic periods.
    Keywords: phase synchronization, autonomic regulation, self-oscillatory circuit, cardiovascular system, data analysis
    Citation: Skazkina V., Kiselev A. R., Borovkova  E. I., Ponomarenko V. I., Prokhorov M. D., Karavaev A. S.,  Estimation of synchronization of contours of vegetative regulation of circulation from long time records, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 1, pp.  3-12
    DOI:10.20537/nd1801001
    Ishbulatov J. M., Karavaev A. S., Ponomarenko V. I., Kiselev A. R., Sergeev S. A., Seleznev Y. P., Bezrychko B. P., Prokhorov M. D.
    Abstract
    We propose an original mathematical model for the human cardiovascular system. The model simulates the heart rate, autonomous control of heart, arterial pressure and cardiorespiratory interaction. Taking into account the self-excited autonomic control allowed us to reproduce the experimentally observed effects of phase synchronization between the control elements. The consistency of the proposed model is validated by quantitative and qualitative reproduction of spectral and statistical characteristics of real data from healthy subjects. Within physiological values of the parameters the model demonstrates chaotic dynamics and reproduces spontaneous interchange between the intervals of spontaneous and nonspontaneous behavior.
    Keywords: mathematical model, synchronization, cardiovascular system, dynamic chaos, time delay system
    Citation: Ishbulatov J. M., Karavaev A. S., Ponomarenko V. I., Kiselev A. R., Sergeev S. A., Seleznev Y. P., Bezrychko B. P., Prokhorov M. D.,  Phase synchronization of elements of autonomic control in mathematical model of cardiovascular system, Rus. J. Nonlin. Dyn., 2017, Vol. 13, No. 3, pp.  381-397
    DOI:10.20537/nd1703006
    Sysoeva M. V., Ponomarenko V. I., Prokhorov M. D., Sysoev I. V.
    Abstract
    A method is proposed for the reconstruction of first-order time-delay systems under external periodic driving from their time series. The method takes into account the structure of the model equation of the system, while constructing the autoregressive model. The proposed method allows one to reconstruct the delay time, the parameter characterizing the system inertial properties, the nonlinear function, and the amplitude and frequency of the external periodic driving. The method efficiency is demonstrated in a numerical experiment by reconstructing a number of different nonautonomous time-delay systems.
    Keywords: reconstruction of model equations, time-delay systems, time series analysis
    Citation: Sysoeva M. V., Ponomarenko V. I., Prokhorov M. D., Sysoev I. V.,  Reconstruction of time-delay systems under external periodic driving, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 4, pp.  613-625
    DOI:10.20537/nd1304001

    Back to the list