Select language: En
Impact Factor

    Jim Papadopoulos

    2802 West Carrera Court, Green Bay, WI 54311, USA


    Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L.
    We present canonical linearized equations of motion for the Whipple bicycle model consisting of four rigid laterally symmetric ideally hinged parts: two wheels, a frame and a front assembly. The wheels are also axisymmetric and make ideal knife-edge rolling point contact with the ground level. The mass distribution and geometry are otherwise arbitrary. This conservative non-holonomic system has a seven-dimensional accessible configuration space and three velocity degrees of freedom parametrized by rates of frame lean, steer angle and rear wheel rotation. We construct the terms in the governing equations methodically for easy implementation. The equations are suitable for e.g. the study of bicycle self-stability. We derived these equations by hand in two ways and also checked them against two nonlinear dynamics simulations. In the century-old literature, several sets of equations fully agree with those here and several do not. Two benchmarks provide test cases for checking alternative formulations of the equations of motion or alternative numerical solutions. Further, the results here can also serve as a check for general purpose dynamic programs. For the benchmark bicycles, we accurately calculate the eigenvalues (the roots of the characteristic equation) and the speeds at which bicycle lean and steer are self-stable, confirming the century-old result that this conservative system can have asymptotic stability.
    Keywords: bicycle, motorcycle, dynamics, linear, stability, non-holonomic
    Citation: Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L.,  Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 2, pp.  343-376
    Kooijman J. D., Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L.
    A riderless bicycle can automatically steer itself so as to recover from falls. The common view is that this self-steering is caused by gyroscopic precession of the front wheel, or by the wheel contact trailing like a caster behind the steer axis. We show that neither effect is necessary for self-stability. Using linearized stability calculations as a guide, we built a bicycle with extra counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel ground-contact forward of the steer axis (making the trailing distance negative). When laterally disturbed from rolling straight this bicycle automatically recovers to upright travel. Our results show that various design variables, like the front mass location and the steer axis tilt, contribute to stability in complex interacting ways.
    Citation: Kooijman J. D., Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L.,  A bicycle can be selfstable without gyroscopic or caster effects, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 2, pp.  377-386

    Back to the list