Impact Factor

    Jacques Verron

    UMR 5519, CNRS, BP 53 38041, Grenoble
    Laboratoire des Ecoulements, Geophysiques et Industriels, CNRS


    Sokolovskiy M. A., Verron J.
    The paper explores the properties of motion of $A+1$ point vortices with $A$ planes of symmetry immersed into a two-layer fluid. The central vortex is supposed to be in the upper layer while the other $A$ vortices have equal intensity and form a regular $A$-gon configuration in the lower layer. For $A\geqslant2$, we study possible stationary motions. For $A=2$, using methods of qualitative analysis, we classify the motions of this vortical structure and obtain preliminary numerical results concerned with stability of symmetrical configurations.
    Keywords: two-layer fluid, point vortex, vortex structures, choreography, phase portrait
    Citation: Sokolovskiy M. A., Verron J.,  Some properties of motion of $A+1$ vortices in a two-layer rotating fluid, Rus. J. Nonlin. Dyn., 2006, Vol. 2, No. 1, pp.  27-54

    Back to the list