Уважаемые авторы и читатели журнала Нелинейная динамика!

Обращаем Ваше внимание, что в целях расширения читательской аудитории и продвижения журнала в международное сообщество, начиная со 2 номера 2018 года журнал будет публиковать статьи только на английском языке. Все принятые к печати на настоящий момент (19.12.2017) рукописи будут опубликованы в 1 номере 2018 года. Статьи, находящиеся на рассмотрении, которые будут рекомендованы к публикации, также войдут в 1 номер 2018 года.

Статьи будут приниматься к рассмотрению как на русском, так и на английском (предпочтительнее) языках. При необходимости, редакция журнала будет оказывать содействие авторам в переводе работ на английский язык.

По всем возникающим вопросам Вы можете обращаться по адресу editorial@rcd.ru.

Выберите язык: Ru / En
0
2013
Impact Factor

    Гусев Илья Константинович

    119333, Россия, г. Москва, ул. Вавилова, д. 40
    diskus1@land.ru
    Вычислительный центр им. А. А.Дородницына РАН

    Публикации:

    Косенко И., Гусев  И. К.
    Подробнее
    Описывается методика построения динамической модели редуктора с прямозубыми эвольвентными зацеплениями. Основное внимание уделяется технологии создания модели упругого контактирования цилиндрических тел. Для отслеживания контакта строится алгоритм слежения за контактом двух цилиндрических поверхностей с эвольвентной направляющей, сводящиийся к плоской редукции для двух эвольвент. При этом, с учетом свойств эвольвенты и в силу рассмотренного ранее алгоритма слежения, оказалось, что общая нормаль к кривым контактирования (эвольвентам) должна совпасть с линией зацепления. Отсюда немедленно следует упрощенная методика отслеживания контакта, не требующая применения системы дифференциально-алгебраических уравнений общего случая. Эта методика сводится к применению относительно простых формул прямого вычисления. Одновременно в компьютерной модели зубчатые колеса и корпус редуктора остаются трехмерными телами.

    В рассматриваемой здесь модели учитывается также возможность люфта в редукторе. Это означает, что при вращении колес возможна потеря контакта между зубьями. После некоторого интервала времени вращения колес без контакта появляется возможность формирования пятна контакта между зубьями обратного хода. Однако динамические причины могут вернуть процесс зацепления к прежнему режиму прямого хода. В модели реализованы все возможные сценарии переключения контактов прямого и обратного хода.

    В реальных редукторах для обеспечения надежности зацепления используется перекрытие контактов по времени. Это свойство также реализовано в рассматриваемой динамической модели. Отдельный контакт зубьев, перемещаясь вдоль линии зацепления, не успевает дойти до точки «расцепления» зубьев, а новый контакт следующей по ходу вращения пары зубьев уже формируется и начинает свое движение вдоль линии зацепления вслед за предыдущим контактом.
    Ключевые слова: прямозубое эвольвентное зацепление, контактная модель Джонсона, свойства зацепления, алгоритм отслеживания контакта, модель люфта, кратное зацепление, объектно-ориентированное моделирование
    Цитирование: Косенко И., Гусев  И. К.,  Компьютерная модель динамики прямозубого эвольвентного зацепления в редукторах, Нелинейная динамика, 2012, т. 8, № 4, с.  713-734
    DOI:10.20537/nd1204004

    Вернуться к списку