Alexander Sakharov

    Institutskii per. 9, Dolgoprudny, Moscow Region, 141700, Russia
    Moscow Institute of Physics and Technology


    Sakharov  A. V.
    The problem of three-dimensional motion of a passively gravitating point in the potential created by a homogeneous thin fixed ring and a point located in the center of the ring is considered. Motion of the point allows two first integrals. In the paper equilibrium points and invariant manifolds of the phase space of the system are found. Motions in them are analyzed. Bifurcations in the phase plane corresponding to the motion in the equatorial plane are shown.
    Keywords: celestial mechanics, axisymmetric potential, center, ring, phase portrait, phase space, first integrals, bifurcations
    Citation: Sakharov  A. V.,  Some Trajectories of a Point in the Potential of a Fixed Ring and Center, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  587-592
    Ivanov A. P., Sakharov  A. V.
    We consider a rigid body which moves upon a rough plane by means of displacements of internal masses. To make turns, we change the angular momentum of the rotor. This leads to asymmetry in normal stresses and appearance of vertical momentum of friction forces.
    Keywords: dry friction, mobile devices without external drivers
    Citation: Ivanov A. P., Sakharov  A. V.,  Dynamics of rigid body, carrying moving masses and rotor, on a rough plane, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp.  763-772

    Back to the list