Nikolay Filatov


    Safronov A. A., Koroteev A. A., Filatov N. I., Safronova N. A.
    Capillary Hydraulic Jump in a Viscous Jet
    2019, Vol. 15, no. 3, pp.  221-231
    Stationary waves in a cylindrical jet of a viscous fluid are considered. It is shown that when the capillary pressure gradient of the term with the third derivative of the jet radius in the axial coordinate is taken into account in the expression, the previously described self-similar solutions of hydrodynamic equations arise. Solutions of the equation of stationary waves propagation are studied analytically. The form of stationary soliton-like solutions is calculated numerically. The results obtained are used to analyze the process of thinning and rupture of jets of viscous liquids.
    Keywords: instability, capillary flows, viscous jet, stationary waves
    Citation: Safronov A. A., Koroteev A. A., Filatov N. I., Safronova N. A.,  Capillary Hydraulic Jump in a Viscous Jet, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  221-231
    Safronov A. A., Koroteev A. A., Filatov N. I., Grigoriev A. L.
    The influence of long-range interactions on the progress of heat waves in the radiationcooling disperse flow is considered. It is shown that the system exhibits oscillations attendant on the process of establishing an equilibrium temperature profile. The oscillation amplitude and the rate of oscillation damping are determined. The conditions under which the radiation cooling process can be unstable with respect to temperature field perturbations are revealed. The results of theoretical analysis and numerical calculation of the actual droplet flow are compared.
    Keywords: disperse flows, radiative heat transfer, long-range interactions, instability
    Citation: Safronov A. A., Koroteev A. A., Filatov N. I., Grigoriev A. L.,  The Effect of Long-Range Interactions on Development of Thermal Waves in the Radiation-Cooling Dispersed Flow, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 3, pp.  343-354

    Back to the list