Impact Factor

    Ramil Khusainov

    ul. Universitetskaya 1, Innopolis, 420500 Russia
    Innopolis University


    Savin S. I., Khusainov R. R.
    In this work, a nonminimal coordinate representation of tensegrity structures with explicit constraints is introduced. A method is proposed for representation of results on tensegrity structures in sparse models of generalized forces, providing advantages for code generation for symbolic or autodifferentiation derivation tasks, and giving diagonal linear models with constant inertia matrices, allowing one not only to simplify computations and matrix inversions, but also to lower the number of elements that need to be stored when the linear model is evaluated along a trajectory.
    Keywords: tensegrity, dynamic model, nonminimal representation, linearized model
    Citation: Savin S. I., Khusainov R. R.,  Sparse Node-Distance Coordinate Representation for Tensegrity Structures, Rus. J. Nonlin. Dyn., 2022, Vol. 18, no. 5, pp.  885-898
    Golousov S. V., Khusainov R. R., Savin S. I.
    The paper deals with one of the modern challenges in walking robotics: moving across a rough terrain where the geometry of the terrain is unknown and hence it is impossible to plan precise trajectories for the robot feet in advance, before a collision with the supporting surface occurs. In this paper, an algorithm for the dynamics correction of the foot trajectory based on the compliant control is employed to deal with the problem. Additionally, to solve the problem of dynamic correction of the foot trajectory, it also provides a biomorphic reaction force profile, which might be a desired property for some applications.
    Keywords: walking robot, uneven terrain, compliant control, biomorphic reaction force profile
    Citation: Golousov S. V., Khusainov R. R., Savin S. I.,  Compliant Control for Walking Robots with the Use of a Virtual Spring-Damper System, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  477-485

    Back to the list