# Oleg Fedichev

9 Institutskii per., Dolgoprudny, Moscow Region, 141700, Russia
Moscow Institute of Physics and Technology (State University)

## Publications:

 Fedichev O. B., Fedichev P. O. Stopping dynamics of sliding and spinning bodies on a rough plane surface 2011, Vol. 7, No. 3, pp.  549-558 Abstract We propose a qualitative theory of stopping dynamics of solids moving on a plane surface with an arbitrary distribution of normal stresses in the contact area. We studied the equations of motion describing the combined action of the dry friction acting on a sliding and spinning body all the way long before the motion ceases, calculated the movement time, and the distance traveled. Finally we identified the localization of the instantaneous center of rotation at the time of the complete stop, which depends on the mass distribution within the body and on the asymptotic behavior of the friction force and torque. Keywords: dry friction, flat motion, instantaneous center of rotation Citation: Fedichev O. B., Fedichev P. O.,  Stopping dynamics of sliding and spinning bodies on a rough plane surface, Rus. J. Nonlin. Dyn., 2011, Vol. 7, No. 3, pp.  549-558 DOI:10.20537/nd1103010
 Fedichev O. B., Fedichev P. O. An approximate solution of a 2D rigid body motion problem on a rough surface 2010, Vol. 6, No. 2, pp.  359-364 Abstract We report a novel general method for constructing an approximate solution of the planar motion of solids with an axially symmetric mass distribution and normal stresses over the contact area on a rough horizontal surface. For a disk characterized by Galin distribution of contact stresses we obtain explicit dependence of the angular and sliding velocity of the body as a function of time. The relative errors of the method do not exceed 1,5–2 %. The simplicity and high accuracy of the method let us recommend its applications in the practice of engineering calculations. Keywords: dry friction, Galin disk, flat motion Citation: Fedichev O. B., Fedichev P. O.,  An approximate solution of a 2D rigid body motion problem on a rough surface, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 2, pp.  359-364 DOI:10.20537/nd1002009