0
2013
Impact Factor

    Andrey Moskvin

    GSP-1, Leninskie Gory, Moscow, 119992, Russia
    Lomonosov Moscow State University

    Publications:

    Moskvin A. Y.
    Rubber ball on a plane: singular solutions
    2010, Vol. 6, No. 2, pp.  345-358
    Abstract
    The paper deals with the rolling motion of a balanced, dynamically asymmetric ball on a plane without sliding and spinning. The problem is natural but was not considered by classicists. Generalizations of the problem are analyzed for the case where gyrostat and force Brun field are added. To investigate the dynamic behavior of the system some peculiar periodic solutions are described and their stability is examined. By integral mapping, bifurcation diagrams and bifurcation complexes are constructed.
    Keywords: bifurcation complex, rubber ball, stability, nonholonomic system
    Citation: Moskvin A. Y.,  Rubber ball on a plane: singular solutions, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 2, pp.  345-358
    DOI:10.20537/nd1002008
    Moskvin A. Y.
    Chaplygin's ball with a gyrostat: singular solutions
    2009, Vol. 5, No. 3, pp.  345-356
    Abstract
    The paper deals with the rolling motion of a balanced, dynamically asymmetric ball with a gyrostat on a horizontal rough plane. To investigate the dynamical behavior of the system and find singular solutions, the bifurcation diagram of the momentum map and the bifurcation complex are constructed. The singular solutions are described and their stability is examined. It is shown that the addition of a gyrostat can turn stable singular solutions into unstable ones and vice versa.
    Keywords: bifurcational complex, Chapligin ball, stability, nonholonomic system
    Citation: Moskvin A. Y.,  Chaplygin's ball with a gyrostat: singular solutions, Rus. J. Nonlin. Dyn., 2009, Vol. 5, No. 3, pp.  345-356
    DOI:10.20537/nd0903003

    Back to the list