0
2013
Impact Factor

    Linear analysis of stability the planar oscillations of a satellite being a plate in a circular orbit

    2005, Vol. 1, No. 2, pp.  181-190

    Author(s): Kholostova O. V.

    We study the motion of a satellite (a rigid body) in a circular orbit about its centre of mass. The satellite is subject to the central Newtonian gravitational field. The satellite’s principal central moments of inertia $A$, $B$ and $C$ are assumed to satisfy the equation $B=A+C$. This equation holds for thin plates. Particular motions occur when the plate executes pendulum-like oscillations of an arbitrary amplitude in the plane of the orbit. A linear analysis of the orbital stability of this motion is carried out. In the plane of parameters of the problem (an amplitude of oscillations and an inertial parameter) domains of orbital linear stability and instability of oscillations of the satellite are obtained both numerically and analytically.
    Keywords: satellite, orbital stability, parametric resonance, action-angle variables, Deprit-Hori method
    Citation: Kholostova O. V., Linear analysis of stability the planar oscillations of a satellite being a plate in a circular orbit, Rus. J. Nonlin. Dyn., 2005, Vol. 1, No. 2, pp.  181-190
    DOI:10.20537/nd0502002


    Download File
    PDF, 183.51 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License