0
2013
Impact Factor

    Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment

    2005, Vol. 1, No. 2, pp.  209-213

    Author(s): Tronin K. G.

    The paper explores the evolution of rotation of a rigid body influenced by a constant and dissipative disturbing moments. With the assumption that the disturbing moments are small, it has been shown numerically that for almost all initial conditions the body’s motion tends asymptotically to a steady rotation around a principal axis with either largest or smallest moment of inertia. On the plane of initial conditions, the points corresponding to these two types of ultimate rotation have been shown to be distributed almost randomly.
    Keywords: disturbed motion, probabilistic phenomena, diagrams of asymptotic motion
    Citation: Tronin K. G., Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment, Rus. J. Nonlin. Dyn., 2005, Vol. 1, No. 2, pp.  209-213
    DOI:10.20537/nd0502004


    Download File
    PDF, 864.83 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License