Hamiltonian representation and integrability of the Suslov problem

    2010, Vol. 6, No. 1, pp.  127-142

    Author(s): Borisov A. V., Kilin A. A., Mamaev I. S.

    We consider the problems of Hamiltonian representation and integrability of the nonholonomic Suslov system and its generalization suggested by S. A. Chaplygin. These aspects are very important for understanding the dynamics and qualitative analysis of the system. In particular, they are related to the nontrivial asymptotic behaviour (i. e. to some scattering problem). The paper presents a general approach based on the study of the hierarchy of dynamical behaviour of nonholonomic systems.
    Keywords: Hamiltonian system, Poisson bracket, nonholonomic constraint, invariant measure, integrability
    Citation: Borisov A. V., Kilin A. A., Mamaev I. S., Hamiltonian representation and integrability of the Suslov problem, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 1, pp.  127-142

    Download File
    PDF, 654.76 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License