0
2013
Impact Factor

    Splitting bifurcation of stochastic cycles in the FitzHugh–Nagumo model

    2013, Vol. 9, No. 2, pp.  295-307

    Author(s): Bashkirtseva I. A., Ryashko L. B., Slepukhina E. S.

    We study the stochastic dynamics of FitzHugh–Nagumo model in the zone of limit cycles. For weak noise, random trajectories are concentrated in a small neighborhood of the initial deterministic unperturbed orbit of the limit cycle. As noise increases, in the zone of Canard cycles of the FitzHugh–Nagumo model, the bundle of random trajectories begins to split into two parts. This phenomenon is investigated using the density distribution of random trajectories. It is shown that the threshold noise intensity corresponding to the splitting bifurcation depends essentially on the degree of the stochastic sensitivity of the cycle. Using the stochastic sensitivity functions technique, a critical value corresponding to the supersensitive cycle is found and comparative parametric analysis of the effect of the stochastic cycle splitting in the vicinity of the critical value is carried out.
    Keywords: FitzHugh–Nagumo model, stochastic sensitivity, cycles, splitting bifurcation
    Citation: Bashkirtseva I. A., Ryashko L. B., Slepukhina E. S., Splitting bifurcation of stochastic cycles in the FitzHugh–Nagumo model, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 2, pp.  295-307
    DOI:10.20537/nd1302007


    Download File
    PDF, 1.31 Mb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License