0
2013
Impact Factor

    The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside

    2013, Vol. 9, No. 3, pp.  547-566

    Author(s): Bizyaev I. A., Borisov A. V., Mamaev I. S.

    In this paper we investigate two systems consisting of a spherical shell rolling on a plane without slipping and a moving rigid body fixed inside the shell by means of two different mechanisms. In the former case the rigid body is fixed at the center of the ball on a spherical hinge. We show an isomorphism between the equations of motion for the inner body with those for the ball moving on a smooth plane. In the latter case the rigid body is fixed by means of the nonholonomic hinge. The equations of motion for this system have been obtained and new integrable cases found. A special feature of the set of tensor invariants of this system is that it leads to the Euler–Jacobi–Lie theorem, which is a new integration mechanism in nonholonomic mechanics.
    Keywords: nonholonomic constraint, tensor invariants, isomorphism, nonholonomic hinge
    Citation: Bizyaev I. A., Borisov A. V., Mamaev I. S., The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 3, pp.  547-566
    DOI:10.20537/nd1303010


    Download File
    PDF, 441.83 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License