0
2013
Impact Factor

    On the Stability of Pendulum-type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point

    2018, Vol. 14, no. 2, pp.  243-263

    Author(s): Belichenko M. V.

    This paper addresses the motion of a Lagrange top in a homogeneous gravitational field under the assumption that the suspension point of the top undergoes high-frequency vibrations with small amplitude in three-dimensional space. The laws of motion of the suspension point are supposed to allow vertical relative equilibria of the top’s symmetry axis. Within the framework of an approximate autonomous system of differential equations of motion written in canonical Hamiltonian form, pendulum-type motions of the top are considered. For these motions, its symmetry axis performs oscillations of pendulum type near the lower, upper or inclined relative equilibrium positions, rotations or asymptotic motions. Integration of the equation of pendulum motion of the top is carried out in the whole range of the problem parameters. The question of their orbital linear stability with respect to spatial perturbations is considered on the isoenergetic level corresponding to the unperturbed motions. The stability evolution of oscillations and rotations of the Lagrange top depending on the ratios between the intensities of the vertical, horizontal longitudinal and horizontal transverse components of vibration is described.
    Keywords: Lagrange’s top, high-frequency vibrations, pendulum-type motions, stability
    Citation: Belichenko M. V., On the Stability of Pendulum-type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 2, pp.  243-263
    DOI:10.20537/nd180208


    Download File
    PDF, 329.67 Kb

    References

    [1] Mlodzieiowski, B., “Über permanente Axen bei der Bewegung eines schweren festen Körpers um einen Punkt”, Tr. Otdel. Fiz. Nauk Ob-va Lubit. Estestvozn., 7:1 (1894), 46–48 (Russian)
    [2] Arkhangelskii, Iu. A., “On the Stability of Motion of a Heavy Solid about a Fixed Point in a Certain Special Case”, J. Appl. Math. Mech., 24:2 (1960), 422–433  crossref  mathscinet; Prikl. Mat. Mekh., 24:2 (1960), 294–302 (Russian)
    [3] Markeev, A. P., “Plane and Quasi-Plane Rotations of a Heavy Rigid Body about a Fixed Point”, Izv. AN SSSR. Mekh. Tverd. Tela, 1988, no. 4, 29–36 (Russian)  adsnasa
    [4] Irtegov, V. D., “The Stability of the Pendulum-Like Oscillations of a Kovalevskaya Gyroscope”, Tr. Kazan. Aviats. Inst., 97 (1968), 38–40 (Russian)
    [5] Bryum, A.Ż., “Orbital Stability Analysis Using First Integrals”, J. Appl. Math. Mech., 53:6 (1989), 689–695  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 53:6 (1989), 873–879 (Russian)  mathscinet  zmath
    [6] Markeyev, A. P., “The Stability of the Plane Motions of a Rigid Body in the Kovalevskaya Case”, J. Appl. Math. Mech., 65:1 (2001), 47–54  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 65:1 (2001), 51–58 (Russian)  mathscinet  zmath
    [7] Markeev, A. P., Medvedev, S. V., and Chekhovskaya, T. N., “To the Problem of Stability of Pendulum-Like Vibrations of a Rigid Body in Kovalevskaya's Case”, Mech. Solids, 38:1 (2003), 1–6  mathscinet; Izv. Akad. Nauk. Mekh. Tverd. Tela, 38:1 (2003), 3–9 (Russian)  mathscinet
    [8] Markeyev, A. P., “The Pendulum-Like Motions of a Rigid Body in the Goryachev – Chaplygin Case”, J. Appl. Math. Mech., 68:2 (2004), 249–258  crossref  mathscinet; Prikl. Mat. Mekh., 68:2 (2004), 282–293 (Russian)  mathscinet
    [9] Bardin, B. S., “Stability Problem for Pendulum-Type Motions of a Rigid Body in the Goryachev – Chaplygin Case”, Mech. Solids, 42:2 (2007), 177–183  crossref  adsnasa; Izv. Akad. Nauk. Mekh. Tverd. Tela, 2007, no. 2, 14–21 (Russian)
    [10] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 704–716  crossref  mathscinet  zmath  adsnasa  elib
    [11] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546  crossref  mathscinet  zmath  adsnasa
    [12] Alekhin, A. K., “On the Stability of Plane Motions of a Heavy Axially Symmetric Rigid Body”, Mech. Solids, 41:4 (2006), 40–45; Izv. Akad. Nauk. Mekh. Tverd. Tela, 41:4 (2006), 56–62 (Russian)
    [13] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257  crossref  mathscinet  zmath  adsnasa  elib
    [14] Yudovich, V. I., “Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian)  mathscinet
    [15] Markeev, A. P., “On the Theory of Motion of a Rigid Body with a Vibrating Suspension”, Dokl. Phys., 54:8 (2009), 392–396  crossref  mathscinet  zmath  adsnasa  elib; Dokl. Akad. Nauk, 427:6 (2009), 771–775  mathnet  mathscinet  zmath
    [16] Markeyev, A. P., “The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point”, J. Appl. Math. Mech., 75:2 (2011), 132–139  crossref  mathscinet  zmath  elib; Prikl. Mat. Mekh., 75:2 (2011), 193–203 (Russian)  mathscinet  zmath
    [17] Kholostova, O. V., “On the Periodic Motion of Lagrange's Top with Vibrating Suspension”, Mech. Solids, 2002, no. 1, 26–38; Izv. Akad. Nauk. Mekh. Tverd. Tela, 2002, no. 1, 34–48 (Russian)
    [18] Kholostova, O. V., “The Dynamics of a Lagrange Top with a Vibrating Suspension Point”, J. Appl. Math. Mech., 63:5 (1999), 741–750  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 63:5 (1999), 785–796 (Russian)  mathscinet  zmath
    [19] Kholostova, O. V., “On a Case of Periodic Motions of the Lagrangian Top with Vibrating Fixed Point”, Regul. Chaotic Dyn., 4:4 (1999), 81–93  crossref  mathscinet  zmath
    [20] Kholostova, O. V., “A Case of Periodic Motion for a Lagrange Gyroscope with a Vibrating Suspension”, Dokl. Phys., 45:12 (2000), 690–693  mathnet  crossref  mathscinet  adsnasa; Dokl. Ross. Akad. Nauk, 375:5 (2000), 627–630 (Russian)  mathscinet
    [21] Kholostova, O. V., “The Stability of a “Sleeping” Lagrange Top with a Vibrating Suspension Point”, J. Appl. Math. Mech., 64:5 (2000), 821–831  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 64:5 (2000), 858–868 (Russian)  zmath
    [22] Markeev, A. P., “On the Motion of a Heavy Dynamically Symmetric Rigid Body with Vibrating Suspension Point”, Mech. Solids, 47:4 (2012), 373–379  crossref  adsnasa  elib; Izv. Akad. Nauk. Mekh. Tverd. Tela, 2012, no. 4, 3–10 (Russian)
    [23] Belichenko, M. V. and Kholostova, O. V., “On the Stability of Stationary Rotations in the Approximate Problem of Motion of Lagrange’s Top with a Vibrating Suspension Point”, Nelin. Dinam., 13:1 (2017), 81–104 (Russian)  mathnet  crossref  mathscinet  zmath
    [24] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)  adsnasa
    [25] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, Berlin, 1971, XVI, 360 pp.  mathscinet  zmath
    [26] Markeev, A. P., Theoretical Mechanics, R&C Dynamics, Institute of Computer Science, Izhevsk, 2007, 592 pp. (Russian)
    [27] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp.  mathscinet  zmath



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License