Impact Factor

    Antipodal Points and Diameter of a Sphere

    2018, Vol. 14, no. 4, pp.  579-581

    Author(s): Podobryaev A.

    We give an example of a Riemannian manifold homeomorphic to a sphere such that its diameter cannot be realized as a distance between antipodal points. We consider a Berger sphere, i.e., a three-dimensional sphere with Riemannian metric that is compressed along the fibers of the Hopf fibration. We give a condition for a Berger sphere to have the desired property. We use our previous results on a cut locus of Berger spheres obtained by the method from geometric control theory.
    Keywords: diameter, $SU_2$, Berger sphere, antipodal points, cut locus, geometric control theory
    Citation: Podobryaev A., Antipodal Points and Diameter of a Sphere, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 4, pp.  579-581

    Download File
    PDF, 203.95 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License