|
References
|
|
[1] |
Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 |
[2] |
Berger, M., “Les variétés riemanniannes homogènes normales simplement connexes à courbure strictement positive”, Ann. Scoula Norm. Sup. Pisa, 15:3 (1961), 179–246 |
[3] |
Nikonorov, Yu. G., “For a Geodesic Diameter of Surfaces with Isometric Involution”, Trudy Rubtzovsk. Industrialn. Inst., 9 (2001), 62–65 (Russian) |
[4] |
Nikonorov, Y. G. and Nikonorova, Y. V., “The Intrinsic Diameter of the Surface of a Parallelepiped”, Discrete Comput. Geom., 40:4 (2008), 504–527 |
[5] |
Novikov, S. P. and Taimanov, I. A., Modern Geometric Structures and Fields, Grad. Stud. Math., 71, AMS, Providence, R.I., 2006, xx+633 pp. |
[6] |
Podobryaev, A. V., “Diameter of the Berger Sphere”, Math. Notes, 103:5–6 (2018), 846–851 ; Mat. Zametki, 103:5 (2018), 779–784 (Russian) |
[7] |
Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $SO(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 |