|
References
|
|
[1] |
FitzHugh, R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 |
[2] |
Nagumo, J., Arimoto, S., and Yoshizawa, S., “An Active Pulse Transmission Line Simulating Nerve Axon”, Proc. of the IRE, 50:10 (1962), 2061–2070 |
[3] |
FitzHugh, R., “A Kinetic Model for the Conductance Changes in Nerve Membranes”, J. Cell. Comp. Physiol., 66:suppl. 2 (1965), 111–117 |
[4] |
Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 |
[5] |
Postnikov, E. B. and Titkova, O. V., “A Correspondence between the Models of Hodgkin – Huxley and FitzHugh – Nagumo Revised”, Eur. Phys. J. Plus, 131:11 (2016), 411 |
[6] |
Saha, A. and Feudel, U., “Extreme Events in FitzHugh – Nagumo Oscillators Coupled with Two Time Delays”, Phys. Rev. E, 95:6 (2017), 062219, 10 pp. |
[7] |
Schmidt, A., Kasmatis, Th., Hizanidas, J., Provata, A., and Hövel, P., “Chimera Patterns in Two-Dimensional Networks of Coupled Neurons”, Phys. Rev. E, 95:3 (2017), 032224, 13 pp. |
[8] |
Zemskov, E. P., Tsyganov, M. A., and Horsthemke, W., “Oscillatory Pulses and Wave Trains in a Bistable Reaction-Diffusion System with Cross Diffusion”, Phys. Rev. E, 95:1 (2017), 012203, 9 pp. |
[9] |
Scott, A., Nonlinear Science. Emergence and Dynamics of Coherent Structures, 2nd ed., Oxford Univ. Press, Oxford, 2005 |
[10] |
Kudryashov, N. A., “Asymptotic and Exact Solutions of the FitzHugh – Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160 |
[11] |
Kudryashov, N. A., Rybka, R. B., and Sboev, A. G., “Analytical Properties of the Perturbed FitzHugh – Nagumo Model”, Appl. Math. Lett., 76 (2018), 142–147 |
[12] |
Llibre, J. and Vidal, C., “Periodic Solutions of a Periodic FitzHugh – Nagumo System”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:13 (2015), 1550180, 6 pp. |
[13] |
Rinzel, J., “A Formal Classification of Bursting Mechanisms in Excitable Systems”, Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomath., 71, eds. E. Teramoto, M. Yamaguti, Springer, Berlin, 1987, 267–281 |
[14] |
Belykh, V. N. and Pankratova, E. V., “Chaotic Synchronization in Ensembles of Coupled Neurons Modeled by the FitzHugh – Rinzel System”, Radiophys. Quantum El., 49:11 (2006), 910–921 ; Izv. Vyssh. Uchebn. Zaved. Radiofizika, 49:11 (2006), 1002–1014 (Russian) |
[15] |
Zemlyanukhin, A. I. and Bochkarev, A. V., “Analytical Properties and Solutions of the FitzHugh – Rinzel Model”, Russian J. Nonlinear Dyn., 15:1 (2019), 3–12 |
[16] |
Painlevé, P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 |
[17] |
Gambier, B., “Sur les équations différetielles dont l'integrate générale est uniforme”, C. R. Acad. Sci. Paris, 142 (1906), 266–269, 1403–1406, 1497–1500 |
[18] |
Kudryashov, N. A., “Amalgamations of the Painlevé Equations”, J. Math. Phys., 44:12 (2003), 6160–6178 |
[19] |
Borisov, A. V. and Kudryashov, N. A., “Paul Painlevé and His Contribution to Science”, Regul. Chaotic Dyn., 19:1 (2014), 1–19 |
[20] |
Kudryashov, N. A., “Higher Painlevé Transcensents As Special Solutions of Some Nonlinear Integrable Hierarchies”, Regul. Chaotic Dyn., 19:1 (2014), 48–63 |
[21] |
Kudryashov, N. A., “Nonlinear Differential Equations Associated with the First Painlevé Hierarchy”, Appl. Math. Lett., 90 (2019), 223–228 |
[22] |
Kudryashov, N. A., “Exact Solutions of the Equation for Surface Waves in a Convecting Fluid”, Appl. Math. Comput., 344/345 (2019), 97–106 |
[23] |
Kudryashov, N. A., “Exact Solutions and Integrability of the Duffing – van der Pol Equation”, Regul. Chaotic Dyn., 23:4 (2018), 471–479 |
[24] |
Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed., Chapman & Hall/CRC, Boca Raton, Fla., 2002 |
[25] |
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 2nd ed., CRC, Boca Raton, Fla., 2012 |
[26] |
Polyanin, A. D. and Zaitsev, V. F., Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, Chapman & Hall/CRC, Boca Raton, Fla., 2017, 1496 pp. |
[27] |
Kudryashov, N. A., “Exact Solutions of the Generalized Kuramoto – Sivashinsky Equation”, Phys. Lett. A, 147:5–6 (1990), 287–291 |
[28] |
Kudryashov, N. A., “Solitary and Periodic Solutions of the Generalized Kuramoto – Sivashinsky Equation”, Regul. Chaotic Dyn., 13:3 (2008), 234–238 |
[29] |
Kudryashov, N. A., “One Method for Finding Exact Solutions of Nonlinear Differential Equations”, Commun. Nonlinear Sci. Numer. Simul., 17:6 (2012), 2248–2253 |
[30] |
Kudryashov, N. A., “Polynomials in Logistic Function and Solitary Waves of Nonlinear Differential Equations”, Appl. Math. Comput., 219:17 (2013), 9245–9253 |
[31] |
Kudryashov, N. A., “Painlevé Analysis and Exact Solutions of the Korteweg – de Vries Equation with a source”, Appl. Math. Lett., 41 (2015), 41–45 |