Impact Factor

    Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the Sine-Gordon Equation with Attracting Impurity

    2019, Vol. 15, no. 1, pp.  21-34

    Author(s): Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., Fakhretdinov M. I.

    The generation and evolution of localized waves on an impurity in the scattering of a kink of the sine-Gordon equation are studied. It is shown that the problem can be considered as excitation of oscillations of a harmonic oscillator by a short external impulse. The external impulse is modeled by the scattering of a kink on an impurity. The influence of the modes of motion of a kink on the excitation energy of localized waves is numerically and analytically studied. The method of collective coordinate for the analytical study is used. The value of this energy is determined by the ratio of the impurity parameters and the initial kink velocity. It is shown that the dependence of the energy (and amplitude) of the generated localized waves on the initial kink velocity has only one maximum. This behavior is observed for the cases of point and extended impurities. Analytical expression for the amplitude of the localized wave in the case of point impurity is obtained. This allows controlling the excitation energy of localized waves using the initial kink velocity and impurity parameters. The study of the evolution of localized impurities under the action of an external force and damping has shown a good agreement with the nondissipative case. It is shown that small values of the external force have no significant effect on the oscillations of localized waves. An analytical expression for the logarithmic decrement of damping is obtained. This study may help to control the parameters of the excited waves in real physical systems.
    Keywords: sine-Gordon equation, impurity, kink, wave generation
    Citation: Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., Fakhretdinov M. I., Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the Sine-Gordon Equation with Attracting Impurity, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 1, pp.  21-34

    Download File
    PDF, 475.67 Kb


    [1] The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014  mathscinet  zmath
    [2] Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge, New York, 2005  mathscinet  zmath
    [3] Yakushevich, L. V., Savin, A. V., and Manevitch, L. I., “On the Internal Dynamics of Topological Solitons in DNA”, Phys. Rev. E, 66:1 (2002), 016614, 14 pp.  crossref  mathscinet  adsnasa
    [4] Shamsutdinov, M. A., Khabibullin, I. T., Kharisov, A. T., and Tankeyev, A. P., “Dynamics of Magnetic Kinks in Exchange-Coupled Ferromagnetic Layers”, Phys. Metals Metallogr., 108:4 (2009), 327  crossref  adsnasa; Fiz. Met. i Metalloved., 108:4 (2009), 345–358 (Russian)
    [5] Braun, O. M. and Kivshar, Yu. S., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII, 472 pp.  mathscinet  zmath
    [6] Dauxois, Th. and Peyrard, M., Physics of Solitons, Cambridge Univ. Press, Cambridge, 2010, xii+422 pp.  mathscinet  zmath
    [7] Gani, V. A., Lensky, V., and Lizunova, M. A., “Kink Excitation Spectra in the $(1+1)$-Dimensional $\varphi^8$ Model”, J. High Energ. Phys., 2015:8 (2015), 147, 21  crossref  mathscinet  zmath
    [8] Gani, V. A., Lizunova, M. A., and Radomskiy, R. V., “Scalar Triplet on a Domain Wall”, J. Phys. Conf. Ser., 675 (2016), 012020, 4 pp.  crossref  mathscinet
    [9] Gani, V. A., Kudryavtsev, A. E., and Lizunova, M. A., “Kink Interactions in the $(1+1)$-Dimensional $\varphi^6$ Model”, Phys. Rev. D, 89:12 (2014), 125009, 12 pp.  crossref  adsnasa  elib
    [10] Kavitha, L., Parasuraman, E., Gopi, D., Prabhu, A., and Vicencio, R. A., “Nonlinear Nano-Scale Localized Breather Modes in a Discrete Weak Ferromagnetic Spin Lattice”, J. Magn. Magn. Mater., 401 (2016), 394–405  crossref  adsnasa  elib
    [11] Kavitha, L., Mohamadou, A., Parasuraman, E., Gopi, D., Akila, N., and Prabhu, A., “Modulational Instability and Nano-Scale Energy Localization in Ferromagnetic Spin Chain with Higher Order Dispersive Interactions”, J. Magn. Magn. Mater., 404 (2016), 91–118  crossref  elib
    [12] Golovchan, A. V., Kruglyak, V. V., Tkachenko, V. S., and Kuchko, A. N., “Magnonic Band Spectrum of Spin Waves in an Elliptical Helix”, R. Soc. Open Sci., 5:1 (2018), 172285, 9 pp.  crossref  adsnasa
    [13] Askari, A., Saadatmand, D., and Javidan, K., “Collective Coordinate System in $(2+1)$ Dimensions: $CP^1$ Lumps-Potential Interaction”, Waves Random Complex Media, 29:2 (2019), 368–381  crossref  mathscinet
    [14] Moradi Marjaneh, A., Askari, A., Saadatmand, D., and Dmitriev, S. V., “Extreme Values of Elastic Strain and Energy in Sine-Gordon Multi-Kink Collisions”, Eur. Phys. J. B, 91:1 (2018), 22, 8 pp.  crossref  mathscinet  adsnasa
    [15] Popov, S. P., “Compactons and Riemann Waves of an Extended Modified Korteweg – de Vries Equation with Nonlinear Dispersion”, Comput. Math. Math. Phys., 58:3 (2018), 437–448  mathnet  crossref  mathscinet  zmath
    [16] Popov, S. P., “Nonautonomous Soliton Solutions of the Modified Korteweg – de Vries – Sine-Gordon Equation”, Comput. Math. Math. Phys., 56:11 (2016), 1929–1937  mathnet  crossref  mathscinet  zmath  elib
    [17] Dubovik, M. N., Korzunin, L. G., and Filippov, B. N., “Asymmetrical Pinning of Vortex Domain Walls in Ferromagnetic Films in Areas with Increased Saturation Magnetization”, Phys. Metals Metallogr., 116:7 (2015), 656–662  crossref  adsnasa; Fiz. Met. i Metalloved., 116:7 (2015), 694–700 (Russian)
    [18] Ekomasov, E. G., Gumerov, A. M., Kudryavtsev, R. V., Dmitriev, S. V., and Nazarov, V. N., “Multisoliton Dynamics in the Sine-Gordon Model with Two Point Impurities”, Braz. J. Phys., 48:6 (2018), 576–584  crossref  mathscinet  adsnasa
    [19] Nonlinear Science at the Dawn of the 21st Century, Lecture Notes in Phys., 542, eds. P. L. Christiansen, M. P. Sørensen, A. C. Scott, Springer, Berlin, 2000  mathscinet  zmath
    [20] Currie, J. P., Trullinger, S. E., Bishop, A. R., and Krumhandl, J. A., “Numerical Simulation of Sine-Gordon Soliton Dynamics in the Presence of Perturbations”, Phys. Rev. B, 15:12 (1977), 5567–5580  crossref  mathscinet  adsnasa
    [21] Ekomasov, E. G., Gumerov, A. M., and Murtazin, R. R., “Interaction of Sine-Gordon Solitons in the Model with Attracting Impurities”, Math. Models Methods Appl. Sci., 40:17 (2016), 6178–6186  crossref  mathscinet  adsnasa
    [22] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “On the Possibility of the Observation of the Resonance Interaction between Kinks of the Sine-Gordon Equation and Localized Waves in Real Physical Systems”, JETP Lett., 101:12 (2015), 835–839  mathnet  crossref  mathscinet  adsnasa; Pis'ma v Zh. Èksper. Teoret. Fiz., 101:12 (2015), 935–939 (Russian)
    [23] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “Resonance Dynamics of Kinks in the Sine-Gordon Model with Impurity, External Force and Damping”, J. Comput. Appl. Math., 312 (2017), 198–208  crossref  mathscinet  zmath  elib
    [24] Kivshar, Yu. S., Pelinovsky, D. E., Cretegny, T., and Peyrard, M., “Internal Modes of Solitary Waves”, Phys. Rev. Lett., 80:23 (1998), 5032–5035  crossref  adsnasa
    [25] Kivshar, Yu. S., Malomed, B. A., Zhang, F., and Vazquez, L., “Creation of Sine-Gordon Solitons by a Pulse Force”, Phys. Rev. B, 43:1 (1991), 1098–1109  crossref  mathscinet  adsnasa
    [26] González, J. A., Bellorín, A., and Guerrero, L. E., “Internal Modes of Sine-Gordon Solitons in the Presence of Spatiotemporal Perturbations”, Phys. Rev. E (3), 65:6 (2002), 065601, 4 pp.  crossref  mathscinet
    [27] Kivshar, Yu. S. and Malomed, B. A., “Addendum: Dynamics of Solitons in Nearly Integrable Systems”, Rev. Mod. Phys., 63:1 (1991), 211–212  crossref  mathscinet  adsnasa
    [28] Javidan, K., “Analytical Formulation for Soliton-Potential Dynamics”, Phys. Rev. E, 78:4 (2008), 046607, 8 pp.  crossref  adsnasa
    [29] Chacón, R., Bellorín, A., Guerrero, L. E., and González, J. A., “Spatiotemporal Chaos in Sine-Gordon Systems Subjected to Wave Fields: Onset and Suppression”, Phys. Rev. E, 77:4 (2008), 046212, 4 pp.  crossref  adsnasa
    [30] González, J. A., Bellorín, A., Reyes, L. I., Vásquez, C., and Guerrero, L. E., “Geometrical Resonance in Spatiotemporal Systems”, Europhys. Lett., 64:6 (2003), 743–749  crossref  adsnasa
    [31] González, J. A., Cuenda, S., and Sánchez, A., “Kink Dynamics in Spatially Inhomogeneous Media: The Role of Internal Modes”, Phys. Rev. E (3), 75:3 (2007), 036611, 7 pp.  crossref  mathscinet
    [32] Gumerov, A. M., Ekomasov, E. G., Murtazin, R. R., and Nazarov, V. N., “Transformation of sine-Gordon solitons in models with variable coefficients and damping”, Comput. Math. Math. Phys., 55:4 (2015), 628–637  mathnet  crossref  mathscinet  zmath  elib
    [33] González, J. A., Bellorín, A., García-Ñustes, M. A., Guerrero, L. E., Jiménez, S., and Vázquez, L., “Arbitrarily Large Numbers of Kink Internal Modes in Inhomogeneous Sine-Gordon Equations”, Phys. Lett. A, 381:24 (2017), 1995–1998  crossref  mathscinet  zmath
    [34] González, J. A. Jiménez, S., Bellorín, A., Guerrero, L. E., and Vázquez, L., “Internal Degrees of Freedom, Long-Range Interactions and Nonlocal Effects in Perturbed Klein – Gordon Equations”, Phys. A, 391:3 (2012), 515–527  crossref  mathscinet
    [35] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P. G., “Interaction of Sine-Gordon Kinks and Breathers with a Parity-Time-Symmetric Defect”, Phys. Rev. E, 90:5 (2014), 052902, 10 pp.  crossref  adsnasa  elib
    [36] Belova, T. I. and Kudryavtsev, A. E., “Solitons and Their Interactions in Classical Field Theory”, Physics-Uspekhi, 40:4 (1997), 359–386  mathnet  crossref  adsnasa; Uspekhi Fiz. Nauk, 167:4 (1997), 377–406 (Russian)  crossref
    [37] Popov, S. P., “Influence of Dislocations on Kink Solutions of the Double Sine-Gordon Equation”, Comput. Math. Math. Phys., 53:12 (2013), 1891–1899  mathnet  crossref  mathscinet  zmath  elib
    [38] Malomed, B. A., “Dynamics of Quasi-One-Dimensional Kinks in the Two-Dimensional Sine-Gordon Model”, Phys. D, 52:2–3 (1991), 157–170  crossref  mathscinet  zmath
    [39] Saadatmand, D. and Javidan, K., “Collective-Coordinate Analysis of Inhomogeneous Nonlinear Klein – Gordon Field Theory”, Braz. J. Phys., 43:1–2 (2013), 48–56  crossref  adsnasa  elib
    [40] Ekomasov, E. G., Gumerov, A. M., Murtazin, R. R., Kudryavtsev, R. V., Ekomasov, A. E., and Abakumova, N. N., “Resonant Dynamics of the Domain Walls in Multilayer Ferromagnetic Structure”, Solid State Phenom., 233–234 (2015), 51–54  crossref
    [41] Ekomasov, E. G. and Shabalin, M. A., “Simulation the Nonlinear Dynamics of Domain Walls in Weak Ferromagnets”, Phys. Metals Metallogr., 101:Suppl. 1 (2006), S48–S50  crossref
    [42] Ekomasov, E. G., Murtazin, R. R., Bogomazova, O. B., and Gumerov, A. M., “One-Dimensional Dynamics of Domain Walls in Two-Layer Ferromagnet Structure with Different Parameters of Magnetic Anisotropy and Exchange”, J. Magn. Magn. Mater., 339 (2013), 133–137  crossref  adsnasa  elib
    [43] Ekomasov, E. G., Murtazin, R. R., Bogomazova, O. B., and Nazarov, V. N., “Excitation and Dynamics of Domain Walls in Three-Layer Ferromagnetic Structure with Different Parameters of the Magnetic Anisotropy and Exchange”, Mater. Sci. Forum, 845 (2016), 195–198  crossref  elib
    [44] Gulevich, D. R. and Kusmartsev, F. V., “Perturbation Theory for Localized Solutions of the Sine-Gordon Equation: Decay of a Breather and Pinning by a Microresistor”, Phys. Rev. B, 74:21 (2006), 214303, 5 pp.  crossref  adsnasa  elib
    [45] Gumerov, A. M., Ekomasov, E. G., Kudryavtsev, R. V., and Fakhretdinov, M. I., “Localized Magnetic Inhomogeneities Generation on Defects As a New Channel of Damping for a Moving Domain Wall”, Letters on Materials, 8:3 (2018), 299–304 (Russian)  crossref
    [46] Paul, D. I., “Soliton Theory and the Dynamics of a Ferromagnetic Domain Wall”, J. Phys. C, 12:3 (1979), 585–593  crossref  adsnasa
    [47] Piette, B. and Zakrzewski, W. J., “Scattering of Sine-Gordon Kinks on Potential Wells”, J. Phys. A, 40:22 (2007), 5995–6010  crossref  mathscinet  zmath  adsnasa
    [48] Gumerov, A. M. and Ekomasov, E. G., “Study of the Effect of Point Defects on the Nonlinear Dynamics of Magnetic Nonuniformities”, Letters on Materials, 3:2 (2013), 103–105 (Russian)  crossref
    [49] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “Dynamics of Localized Magnetic Inhomogeneities in the Five-Layer Ferromagnetic Structure”, Letters on Materials, 6:2 (2016), 138–140 (Russian)  crossref
    [50] Ekomasov, E. G., Azamatov, S. A., and Murtazin, R. R., “Studying the Nucleation and Evolution of Magnetic Inhomogeneities of the Soliton and Breather Type in Magnetic Materials with Local Inhomogeneities of Anisotropy”, Phys. Metals Metallogr., 105:4 (2008), 313–321  crossref  adsnasa; Fiz. Met. i Metalloved., 105:4 (2008), 341–349 (Russian)
    [51] Zhang, F., Kivshar, Yu. S., and Vazquez, L., “Resonant Kink-Impurity Interactions in the Sine-Gordon Model”, Phys. Rev. A, 45:8 (1992), 6019–6030  crossref  mathscinet  adsnasa
    [52] Landa, P. S., Nonlinear Oscillations and Waves in Dynamical Systems, Math. Appl., 360, Springer, Dordrecht, 2013  mathscinet
    [53] Goodman, R. H., Holmes, P. J., and Weinstein, M. I., “Interaction of Sine-Gordon Kinks with Defects: Phase Space Transport in a Two-Mode Model”, Phys. D, 161:1 (2002), 21–44  crossref  mathscinet  zmath
    [54] Ekomasov, E. G., Murtazin, R. R., and Nazarov, V. N., “Excitation of Magnetic Inhomogeneities in Three-Layer Ferromagnetic Structure with Different Parameters of the Magnetic Anisotropy and Exchange”, J. Magn. Magn. Mater., 385 (2015), 217–221  crossref  adsnasa  elib

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License