0
2013
Impact Factor

    Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process

    2019, Vol. 15, no. 2, pp.  145-158

    Author(s): Gouskov A. M., Guskov M. A., Tung D. D., Panovko G. Y.

    This work presents nonlinear dynamics modeling results for an investigation of continuous cut stability in multicutter turning. The dynamics modeling of the multicutter turning process is carried out through the complete mathematical model of nonlinear dynamics. The dynamic stability of the system is estimated through the possibility of self-oscillations generation (Poincaré – Andronov –Hopf bifurcation) of the cutters with lobes of the stability diagram. This paper analyzes the relationship of the axial offset and the cutter angular position for compensation of the system parameters. As a result, the analysis of the influence of the technological system parameters on the chip thickness, their cross-sectional shape and the stability of the system is carried out.
    Keywords: multicutter turning, dynamics, modeling, bifurcation analysis, steady cutting stability conditions
    Citation: Gouskov A. M., Guskov M. A., Tung D. D., Panovko G. Y., Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 2, pp.  145-158
    DOI:10.20537/nd190204


    Download File
    PDF, 4.09 Mb

    References

    [1] Astashev, V. K. and Korendyasev, G. K., “Thermomechanical Model of the Occurrence of Oscillations in Metal Cutting”, J. Mach. Manuf. Reliab., 41:3 (2012), 189–193  crossref  elib; Problemy Mashinostroeniya i Nadezhnosti Mashin, 2012, no. 3, 3–9 (Russian)
    [2] Azvar, M. and Budak, E., “Multi-Dimensional Modelling of Chatter Stability in Parallel Turning Operation”, Proc. of the 17th Internat. Conf. on Machine Design and Production (Bursa, Turkey, July 12–15, 2016), 13
    [3] Benardos, P. G., Mosialos, S., and Vosniakos, G. C., “Prediction of Workpiece Elastic Deflections under Cutting Forces in Turning”, Robot. Comput. Integr. Manuf., 22:5–6 (2002), 505–514
    [4] Brecher, C., Epple, A., Neus, S., and Fey, M., “Optimal Process Parameters for Parallel Turning Operations on Shared Cutting Surfaces”, Int. J. Mach. Tool. Manu., 95 (2015), 13—19  crossref
    [5] Paris, H., Brissaud, D., Gouskov, A., Guibert, N., and Rech, J., “Influence of the Ploughing Effect on the Dynamic Behavior of the Self-Vibratory Drilling Head”, CIRP Ann., 57:1 (2008), 385–388  crossref  elib
    [6] Dombovari, Z., Barton, D. A. W., Wilson, R. E., and Stepan, G., “On the Global Dynamics of Chatter in the Orthogonal Cutting Model”, Int. J. Nonlin. Mech., 46:1 (2011), 330–338  crossref
    [7] Gerasimenko, A. A., Guskov, M. A., Gouskov, A. M., Lorong, Ph., and Panovko, G. Ya., “Analytical Approach of Turning Thin-Walled Tubular Parts. Stability Analysis of Regenerative Chatter”, Vibroeng. Proc., 8 (2016), 179–184
    [8] Gouskov, A. M., Voronov, S. A., Paris, H., and Batzer, S. A., “Cylindrical Workpiece Turning Using Multiple-Cutting Tool”, Proc. of the Design Technical Conf. and Computers and Information Engineering Conf. (Pittsburgh, Pa., 2001)
    [9] Gouskov, A. M., Voronov, S. A., Paris, H., and Batzer, S. A., “Nonlinear Dynamics of a Machining System with Two Interdependent Delays”, Comm. Nonlinear Sci. Numer. Simulat., 7:3 (2002), 207–221  crossref  zmath  adsnasa
    [10] Gouskov, A. M., Guskov, M. A., Lorong, Ph., and Panovko, G. Ya., “Influence of the Clearance Face on the Condition of Chatter Self-Excitation during Turning”, IJMMM, 19:1 (2017), 17–39  crossref
    [11] Gouskov, A. M., Guskov, M. A., Ding Dyk Tung, and Panovko, G. Ya., “Multi-Cutter Turning Process Stability Analysis”, Vibroeng. Proc., 17 (2018), 124–128  crossref
    [12] Gouskov, A. M., Guskov, M. A., Dinh Duc Tung, and Panovko, G. Ya., “Modeling and Investigation of the Stability of a Multicuttet Turning Process by a Trace”, J. Mach. Manuf. Reliab., 47:4 (2018), 317–323  crossref; Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, no. 4, 19–27 (Russian)
    [13] Gouskov, A. M., “Dynamics of Two-Cutter Turning: 1”, Stanki i Instrument, 2004, no. 11, 3–6 (Russian)
    [14] Kalidasan, R., Yatin, M., Sarma, D. K., Senthilvelan, S., and Dixit, U. S., “An Experimental Study of Cutting Forces and Temperature in Multi-Tool Turning of Grey Cast Iron”, IJMMM, 18:5/6 (2016), 540–551  crossref
    [15] Kondratenko, K., Gouskov, A., Guskov, M., Lorong, Ph., and Panovko, G., “Analysis of Indirect Measurement of Cutting Forces Turning Metal Cylindrical Shells”, Vibration Engineering and Technology of Machinery, Mechan. Machine Science, 23, ed. J. Sinha, Springer, Cham, 2015, 929–937 (Russian)  crossref
    [16] Kozochkin, M. P., Dynamic of Cutting Process: Theory, Experiment, Analysis, Lambert, Saarbrücken, 2013, 297 pp. (Russian)
    [17] Kudinov, V. A., Dynamics of Machine Tools, Mashinostroenie, Moscow, 1967, 357 pp. (Russian)
    [18] Lamikiz, A., Lopez de Lacalle, L. N., Sanchez, J. A., and Bravo, U., “Calculation of the Specific Cutting Coefficients and Geometrical Aspects in Sculptured Surface Machining”, Mach. Sci. Technol., 9:3 (2005), 411–436  crossref
    [19] Ozturk, E., Comak, A., and Budak, E., “Tuning of Tool Dynamics for Increased Stability of Parallel (Simultaneous) Turning Processes”, J. Sound Vibration, 360 (2016), 17–30  crossref  adsnasa
    [20] Reith, M. J., Bachrathy, D., and Stepan, G., “Improving the Stability of Multi-Cutter Turning with Detuned Dynamics, Machining Science and Technology”, Mach. Sci. Technol., 20:3 (2016), 440–459  crossref  elib
    [21] Wang, X. and Feng, C. X., “Development of Empirical Models for Surface Roughness Prediction in Finish Turning”, Int. J. Adv. Manuf. Technol., 20:5 (2002), 348–356  crossref



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License