0
2013
Impact Factor

    The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane

    2019, Vol. 15, no. 2, pp.  171-178

    Author(s): Ivanova T. B.

    This paper is concerned with the rolling of a homogeneous ball with slipping on a uniformly rotating horizontal plane. We take into account viscous friction forces arising when there is slipping at the contact point. It is shown that, as the coefficient of viscosity tends to infinity, the solution of the generalized problem on each fixed time interval tends to a solution of the corresponding nonholonomic problem.
    Keywords: rotating surface, turntable, nonholonomic constraint, rolling ball, sliding, viscous friction
    Citation: Ivanova T. B., The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 2, pp.  171-178
    DOI:10.20537/nd190206


    Download File
    PDF, 443.65 Kb

    References

    [1] Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Deighton, Cambridge, 1844
    [2] Borisov, A. V., Ivanova, T. B., Karavaev, Yu. L., and Mamaev, I. S., “Theoretical and Experimental Investigations of the Rolling of a Ball on a Rotating Plane (Turntable)”, Eur. J. Phys., 39:6 (2018), 065001, 13 pp.  crossref
    [3] Fufaev, N. A., “A Sphere Rolling on a Horizontal Rotating Plane”, J. Appl. Math. Mech., 47:1 (1983), 27–29  crossref  mathscinet; Prikl. Mat. Mekh., 47:1 (1983), 43–47 (Russian)
    [4] Fufaev, N. A., “On the Possibility of Realizing a Nonholonomic Constraint by Means of Viscous Friction Forces”, J. Appl. Math. Mech., 28:3 (1964), 630–632  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 28:3 (1964), 513–515 (Russian)  mathscinet  zmath
    [5] Kolesnikov, S. L., “The Problem of a Homogeneous Heavy Ball Rolling with Slipping in a Vertical Cylinder”, Collection of scientific and Methodical Papers on Theoretical Mechanics, v. 17, Vysshaya Shkola, Moscow, 1986, 118–121 (Russian)
    [6] Karapetyan, A. V. and Rumyantsev, V. V., Stability of Conservative and Dissipative Systems, Itogi Nauki Tekh. Ser. Obshch. Mekh., 6, VINITI, Moscow, 1983, 132 pp. (Russian)  mathscinet
    [7] Eldering, J., “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [8] Borisov, A. V. and Mamaev, I. S., “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490  crossref  mathscinet  zmath  adsnasa  elib
    [9] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Hamilton Principle and the Rolling Motion of a Symmetric Ball”, Dokl. Phys., 62:6 (2017), 314–317  mathnet  crossref  mathscinet  adsnasa  elib; Dokl. Akad. Nauk, 474:5 (2017), 558–562 (Russian)  mathscinet
    [10] Gersten, J., Soodak, H., and Tiersten, M. S., “Ball Moving on Stationary or Rotating Horizontal Surface”, Am. J. Phys., 60:1 (1992), 43–47 Kyeong Min Kim, Donggeon Oh, Junghwan Lee, Young-Gui Yoon, Chan-Oung Park. Dynamics of Cylindrical and Spherical Objects on a Turntable HAL Id: $hal-01761333$, version 1, \textsf{https://hal.archives-ouvertes.fr/hal-01761333} (2018).  crossref  adsnasa
    [11] Kyeong Min Kim, Donggeon Oh, Junghwan Lee, Young-Gui Yoon, Chan-Oung Park, Dynamics of Cylindrical and Spherical Objects on a Turntable, HAL Id: $hal-01761333$, version 1 https://hal.archives-ouvertes.fr/hal-01761333, 2018



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License